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Abstract — Piezoelectric materials (PZT) have been used in
the past to reduce the vibration in several differat
applications. This paper takes a combined structuraland
electromechanical approach to reduce the vibration
amplitude of a rotating cantilever beam. This yield to a
coupled electro-mechanical system, wherein displacent
variables are coupled via electric field. Due to th rotation of
the beam, the centrifugal stiffening effect is alsincluded in
the derivation. A linear partial differential equation is
derived from the Hamilton’s principle, which later solved to
study the natural frequencies and the tip responsef the
beam. Several parametric studies including rotatioal speed
of beam, beam thickness, hub radius and shunt resice
were also conducted. A resistive circuit was lateconnected
to the piezoelectric pieces in series and was tunéad reduce
the vibration in a wide frequency range. A good boadband
vibration reduction was achieved by tuning each shmted
circuit to a different target frequency.

Keywords — Piezoelectric, Periodic Structure, Transfer
Matrix, Rotating Structure.

|. INTRODUCTION

Rotating beams are found in several engineeringues
such as turbine blades and aircraft rotary wingaces
structural vibration can potentially
expectancy and the performance of the structubgation
attenuation is desirable in many engineering appbos.
Vibration attenuation can be achieved by using

Nomenclatures

A Area of the PZT perpendicular to the
poling direction

Cq Electrical damping matrix

Co Capacitance matrix

Mgy Electrical mass matrix

ds; Original piezoelectric coupling
coefficient

d(t) Temporal coordinates for electrical
degrees of freedom

r(t) Temporal coordinates for mechanical
degrees of freedom

D Electrical displacement

e Coupling coefficient

E Electric field

K Kinetic energy

Koyamic  Dynamic stiffness

R Shunt resistance

S Strain of the beam elements

T Stress in the beam elements

u Displacement

U Potential energy

V Volume of the element

W External work done on the system

Greek Symbols

e Dielectric constant

p Density of the Piezoelectric material

) Excitation frequency

b d Electrical shape function of the
piezoelectric element

0] Mechanical shape function of the
piezoelectric element

o Electromechanical coupling matrix

active or passive materials. Passive materials exbritie
structural deformation to thermal energy; while ivact
materials cant react to the deflection in a cotewl
manner to diminish the vibration [1].

Beams with periodic piezoelectric arrays have et
more and more attention in recent years. These beaen
conventionally designed for wave propagation and
vibration attenuation. Piezo-materials are tramséms that
convert mechanical energy into electrical energy wine
versa. When they are bonded to a structure, théamézal
energy absorbed in the piezo-material is convetted
electrical voltage in the poling direction of théezo-
material device. Equally spaced piezo-actuator®diice

reduce thee lif periodicity into the system that can also help oiuy the

vibration in the structure’s stop bands. Extensasearch
has been done on wave propagation in periodictshies
Orris [2] used Finite element method to calculdte t
frequency response of a periodic beam. Shen [3]
conducted a mathematical study to identify the Eige
function solution of a rotating periodic structum@ore
specifically a rotating plate. Duhamel [4] used a
combination of wave and finite element analysis to
determine the forced response of a rotating strecéund
proved the efficiency of the combined approach by
comparing his results with the former mathematical
models. Romeo [5] analyzed the response of a non-
rotating periodic beam to harmonic excitation. Weve
propagation method was used in the study to avoid
numerical difficulties that arise in solving theoptem
using the transfer matrix formulation. Polach [&ed
finite element method to calculate the natural diestcies
and mode shapes of a rotating periodic structuré an
applied the method to rotating turbine blades by
mathematically dissecting the turbine disk intoniizal
parts. The introduction of an external R-L shumtcuwit
forms a resonance with the piezoelectric capacitaard

the frequency of this RLC circuit can then be turied
eliminate or reduce the vibration in target theyfrencies.
Vibration suppression using piezoelectric pairs hasn
investigated in many cases. Thorp [7] used pieztride
actuators with passively shunted resistors thatewer
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periodically placed along a beam to control the
longitudinal wave propagation. The resulting peidod
structure was capable of filtering the propagatbwaves
over specified frequency bands called the stop &an
Similar studies have been done by Ruzzene [8,9],
Hangood [10], and Kandagal [11]. Other researchech

as Singh [12] actively controlled a periodic sturet by
piezoelectric patches to reduce vibration of thetey.
Tang [13] used a combination of actively controlkead
passively shunted piezoelectric actuators to corttre
vibration of a rotating periodic structure. The doned
approach helped reducing the control effort andetioee
the energy consumption while maintaining the nemrgss
vibration control. Kaufman [14] employed a semihaet
method to reduce the vibration in turbo-machindadbs
with a variable rotating speed and therefore addes
longer lifetime for the blades. Zhou [15] achieved
vibration reduction in a large bandwidth by usinighh
order shunt circuits but as expected a smaller itundel
reduction was achieved by using this method. Same
procedures were used to reduce the unwanted ahrafi
plates. Studies done by Spadoni [16] and Beckdrdfe’a
few examples. Other interesting applications of the
concept include: noise reduction in heavy-duty keuc
(Raju & Bianchini [18]), hybrid composites (Aldeham d
et al. [19]), and space structures (Hagood ef8l) [

In this paper the transfer matrix methods is useel td £
its accuracy and a passive approach with focuditining T| |cc-e|S T| |[b=-h|S
the periodicity of the structure for vibration atetion is D - e £|E " E - ~hB|D )
applied over a broad band of frequencies. In cehtmathe
other research in this paper in order to achiewadivand

[F(@&-au+amyt=0 )

Here, K represents the kinetic energy, U the paknt
nergy and W the external work done on the system.

1 T 1 T
=5 IVS puTuadv, + 5 va puudv, (2

_1 T 1 T
u=3 [, s TdV+ [, STav,
. " ®
.
—Ejvp D'EdV,

dN—idJ(x)f(x)

J'f( )—(—Xj X

+ A jAaD(—LD - RD)dA

(4)

The dynamic equation of the piezoelectric actuatsrs
escribed as:

vibration reduction each piezo-electric patch isetito a Where,
different target frequency
2
e E,B €
=— =— = + —
. MODELLING p== h=5 bsct+= ©6)

A rotating beam with periodically installed piezeetric
actuators on top and bottom is considered for s$hisly
(see Fig. 1). More details and the beam specifinatican
be found on Section 4. Here a general model faragic
rotating structure is developed. This model wiletaon be
adapted to the case study presented in this paper.

ﬁ
ﬁ
Fig.1. Rotating beam with piezoelectric patches.

— —

Here, T is the stress on the piezo patch, D istbetric
displacement, c is the elasticity, e is the piezcteic
coupling, ¢ is the electric constant. S is the dimensionless
deflection of the patch (strain), E is the elecfréd, the
superscript, E, indicates that the parameter waessured
at constant electric field and the superscriptsignifies
that the parameter was measured at constant sirhis.
equation introduces the piezoelectric electromeichin
interaction into the model. The piezoelectric cingpl
coefficient (e) relates the mechanical stress énghtch to
the applied electric field. This coupling coeffiotecan
also be written with the use of the more familiaugling
coefficient d;; as presented in Eq. (7):

e=d,c" 7)(
For the piezoelectric coupling coefficiedy;,
subscripts ‘1’ and ‘3’ refer to the direction ofetlapplied
field and the poling direction, respectively. Irdtaing the
piezoelectric material properties Eq (5) into B3): (

Hamilton’s principle is used to derive the dynamic

equation of the system:
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T T

VICSS Vs +\/I bS’ SaVe The electrical displacement can be written as:

s P
1
U =2|-[hS'DdV + [ hDTsdv; (8) D(xt)= #(x)d(t) (14)

Ve Ve

+JV DDAV, Where row vectory(t) is the electrical shape function

L p .

of the piezoelectric element and(t) is the temporal
Equations 2 and 8 can be written in variationahfas coordinates for the electrical degrees of freedom.

follows: The case under consideration in this study is anbea
with bimorph piezoelectric material elements on tip
M = fcsas sV, + I bds” SaV,, — and bottom as shown in Figure (1). In this Figatés the
A Ve hub radius.
_ I hdST DAV + IthTSdV (9) Using Egs (12), (13), and (14) leads to a simglifie
Ve P Ve P equation of motion. The mass and stiffness matacesas
follows:
- | DT Ddv
Jporoav, Ma= [ 08 (P ()N, as)
v
— - T .- + i 10 S
X \_/[,Osd,l UdVS \}[,Opdj UdVP (10) Mp = .[pP¢T (X)¢(X)dVP (16)
s P VP
— [ v2r AT (Y ¢
Substituting Egs. (9) and (10) into Eq. (1): Ks _vf y'cg' (x) #(x) dvs (17)
[ p.duudv, + [ pyouTudv, ] Kp :Vf y’cp" (x) 4(x) dVe (18)
V Vp P
- [e.55"sv, - [basTsAV, K(Rot), = [ 147 (x) 4 (x) Vs (19)
s S Vs
Vs Ve U U
+ J.hJST DdVP _ J'héDTwVP K(ROt)P Z\;[ f¢T(X) ¢(X) dVP (20)
(11) P
Itz dt = 0 The electromechanical coupling matri® and the
t I,BJD DAV, + Z Ju( ) ( ) capacitance matrixC, are defined as:
Ve o=-yhgT (x) ¢(x) v, (21)
! au( dou Ve
—J' f (x)=—| = |dx o
o x| ox Co ==, AW () w(x) ave (22)
+ AJ&D(— LD - RD )dA Electrical mass matrix(M4) and electrical damping
- A - (C4) matrix are as follows:
It is necessary to make a few simplifying variables T
before attempting to solve Eq. (11). The displageneé Mg = IAP ALY (X)(x)dAs (23)
the beam can be written as follows:
Cq = Ry (X)u(x)dA 24
u(x,t):¢(x)r(x) (12) el .[APAS Y ( )w( ) P (24)

Substituting the parameters defined in Eqs. (152%)

Where row vector#(x) is the assumed to be the, o Eq. (11):

mechanical shape function of the piezoelectric elgm

and r(t) is the temporal coordinates for mechanical ‘&T(t)(M +M )r'(t) T
degrees of freedom. According to Euler—Bernoullaroe
theory, strain in the beam is the product of thetatice () Ko+ Kp+ K(ROt) r(t)
from the neutral axis and the second derivative of +K(Rot) (25)
displacement with respect to the position alonghteam. T
Therefore, the following equation can be used tfinde _[tz (t)@ () ad’ ()O () dt =0
the strain: “-adT(t)e,d(t)
M, dt C,d
e )i - " (M, (T) "()e.d()
e £ 3 ER () 1.0)
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Integration of the equation produces the followtagg The boundary conditions are the cantilever boundary
coupled equations, which are coupled by theonditions. Later the forced response can be obdain
electromechanical coupling matr®. Eq. (26) defines the from:
mechanical motion and Eq. (27) defines the eladitric

properties of the system: [KDynamic(w)] {u} ={F} (31)
(Ms +M p)r(x) Where {F} is the vector of externally applied forces
+ (KS +K, + K(Rot)S + K(Rot)p)r (t) (26)  and « is the excitation frequency. In an other form:
nf ~

-ed(t)=>¢(x)" f.(x) {u}=[Kopame ()] {F} (32)
i=1

Mdd( ) (t)+C d( )+ @Tr(t): 0 (7 For all the cases presented in the next sectioa, th

excitation force is applied to the root of the be@econd
node) and the vibration amplitude is measuredatithof
e beam (last node). Transfer function amplitusiehie
f}anthmlc ratio of vibration amplitude at the end
Nyibration amplitude at the root of the beam:

Egs. (26) and (27) represent the proposed electr,
mechanical system and can be used to determlne
motion of the beam. The two equations can be coacbin
as:

Bﬂ M I\;)d k((tt))} N [8 cod }{;((tt))} Trasfer matrix amplitude=20x Iog[ %3] (33)

(K, +K, +K(Rot), + K(Rot), - e}[r(t)} (28)

+ o d(t) In which, A(l;) and A(l,) are vibration amplitude in the
|© Co second and the last node consequently.
[ nf
.
_ > (%) f.t) IV. RESULTS AND DISCUSSIONS
i=1
10 As a case study, a slender cantilever beam with 4

In this paper, the beam is composed of 3 identiciflentical cells was modeled using the proposed aaeth
sections. Each section has a pure beam elemehedeft section 2. A pair of piezoelectric patches is endeed
and a beam element with a piezoelectric patch emigiht. Symmetrically at the top and bottom surfaces ofrigat
Eq. (28) is the equation of motion of the rotatisigzo- hand side element of each cell. Later, a sinusdmkzd
element on the right. The equation of motion for teft was applied at the root of the beam. In order to

side element (element without piezo patches) can K@monstrate the effect of the structure’s peridglidhe
written as: uniform beam was used as a benchmark (Fig. (2)).

IO e k@Ol Zo0) 10 @)

By assembling these element matrices into a global
matrix and solving for the above equations thed¢gponse
and the natural frequencies of the model can bairodd.

a- Uniform Beam
[1l. SoLUTION METHOD

In order to calculate the natural frequencies eftibam, S
first the element matrices must be assembled tairokie
structural mass [M] and stiffness [K] matrices. Tiatural
frequencies can found from the following:

___d

b- Periodic Beam
[KDynamic]{ u} =0

(30)
KDynamic =K - M

Fig. 2. Different beam cases investigated.

The beam is made of aluminium with specifications
Where, Kpynamic i the dynamic stiffness matrix. In demonstrated in Table 1.
order to enforce the boundary conditions using ixatr
partitioning, the first two rows and columns of the
structure’s dynamic stiffness matrix should be eteted.
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Table 1. Model Specifications.

Parameter Value Unit T ; ; Y —
Beam length 0.45 m § | = —-Gamma=s
Beam width 0.036 m ; : ' : Gamma=0
Beam height 0.003 m : i ; g :
Modulus of elasticity of the beam 73 Gpa i : : ; o s 8
Density of the beam 2700 Kg/m3 & : - : i
Charge constant 2.37E-8 m/V 2

Dielectric constant 2.1E-10 F/m £ :

Density of the piezo patch 7700 Kg/m3 ~ N T W | —
Modulus of elasticity of the piezo69 Gpa :

patch :

Piezo patch length 0.07 m :

Piezo patch width 0.036 m : :

Piezo patch height 0.001 m %0 B 000 1500 2000 2500 3000

Frequency (Hz)

Fig. 5. Uniform beam with different rotational splse
70

In order to achieve the vibration suppression in a
specified frequency band, shunt circuit resonant
frequencies should be tuned to natural frequenzigte
beam at that band. While broadband vibration siggioa
can be achieved by setting the tuning frequencees t
several different natural frequencies of the beaarrow
band vibration reduction can be obtainable by rsgtéll
tuning frequencies to a specific natural frequengy.
change in shunt circuit resistance causes a dramati
. change in tip response of the beam. The effecthahts
R resistance on the beam’s frequency response and the
- optimal resistance is displayed in Figure 6. Irs thgure

s3]
o
T

sof )t

Transfer function amplitude (dB)
i
o

- — -

a0 100 140 200 250 300

Frequency (Hz) the tuning frequency was set to 570 Hz and thestasie
Fig. 3. Uniform beam with differenhicknesses was changed from 400 to 1200 Ohm.
8 :
- : ! 5 I e R=1200 Ohm
Delta=1 B R=1000 Chm T
———Dlelta=2

a0 . ........... ......... TR = — i

~ R=500 Ohm

Armplitude (dB)

2l R=700 Ohm

.
[
T

Transfer function amplitude (dB)
o}

R=600 Chm
Ar Red00 Ohm—"
: £
o it Lk LB A
D[l 500 1000 1500 2000 2500 3000 -8 . ! L .
Frequency (Hz) 500 550 GO0 [l

. . . . . Frequency (Hz)
Fig. 4. Uniform beam with different hub radiuses. Fig. 6. Uniform beam with different shunt resistas.c

Some parametric studies including change in beamgyggying the beam and implementing piezo-electric
thickness, hub radius and rotational speed aresimated  sansor/actuators introduce a repeating non-unifgrii
and consequently reported in Figures 3, 4, andu& @  {he heam model, which causes vibration reducticspime

the increase in rotational speed, the rotation#finess frequency bands (stop bands). By tuning the shunt
grows which cases a shift in the natural frequenm@/ard  (esonance frequencies to different natural fregiesnc

higher frequencies. Augmentation of hub radiusca$f¢he 5 iside stop bands broadband vibration suppressms

natural frequencies of the rotating beam in the esamy hieved (see Fig. 7). Tuning frequencies were 4000
manner. In addition an increase in thickness resmit 5700 6700 and 9000 Hz. In all circuits shunt tasise

higher stiffness and higher natural frequenciewels was 100 Ohm. Shunted circuits are accountable for
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vibration reduction between 3000 and 11000 hertdewh high frequency region. Then piezoelectric shuntuiis
the periodicity caused by installing piezoelecpitches were implemented and tuned for the mid-frequenogea
reduced the vibration between 11000 and 16000 .hertz Tuning each shunted circuit to a different frequenc
Rotation changes the beam’s characteristics natura@sulted in vibration reduction in a wide range of

frequencies. While this change natural

frequenciefrequencies and at the same time reduced the is@tySitf

degrades narrowband vibration suppression, thetinega the system to different rotational speeds and fbeze
effect of rotation is not severe in broadband wibra eliminated the need for complicated tuning schemes

suppression (see Fig. 8). For instance, introduaib®Hz
rotation has changed the beam’s 9 kHz natural &equ
to 9.2 kHz but the vibration is still well damped.

100
! e Open circut 1
Bof ! ——RLG cireut |
@ i Clrcy [2]
2 & !
= i 3]
= |
s E &
T !
s " 5
5 ol (5]
T oot (6]
A0 1 1 1 1
0 4 BTET ] 16 [7]
Frequency (kHz)
Fig. 7. Vibration attenuation of a non-rotating irea
(8]
100
Y kb Open circut 9]
= BD*: RLC circut |H
s
g 60y [10]
g
5 (11]
% [12]
=
B 4 5767 3 15 [13]
Freguency (kHz)
Fig. 8. Vibration attenuation of a rotating beam.
(14]
V. CONCLUSIONS
(15]

In order to attenuate the unwanted vibration irating
beams over a broad frequency band, a combination of
piezo-electric actuators with shunted circuits, astdp
bands created by the structure’s periodicity wasiughe
proposed method utilized the beam’s periodicityie]
introduced by adding the piezo-electric patches, to
attenuate the vibration in high frequencies and
piezoelectric patches with shunted circuits to cedthe ;4
vibration in mid-frequencies.

In other words, first the piezo-electric patchesreve
added to the beam. This addition created a periodic
structure, which significantly reduced the vibratim the

adaptive shunted circuits.
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