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Abstract – Piezoelectric materials (PZT) have been used in 

the past to reduce the vibration in several different 
applications. This paper takes a combined structural and 
electromechanical approach to reduce the vibration 
amplitude of a rotating cantilever beam. This yields to a 
coupled electro-mechanical system, wherein displacement 
variables are coupled via electric field. Due to the rotation of 
the beam, the centrifugal stiffening effect is also included in 
the derivation. A linear partial differential equat ion is 
derived from the Hamilton’s principle, which later solved to 
study the natural frequencies and the tip response of the 
beam. Several parametric studies including rotational speed 
of beam, beam thickness, hub radius and shunt resistance 
were also conducted. A resistive circuit was later connected 
to the piezoelectric pieces in series and was tuned to reduce 
the vibration in a wide frequency range.  A good broadband 
vibration reduction was achieved by tuning each shunted 
circuit to a different target frequency.  

 
Keywords – Piezoelectric, Periodic Structure, Transfer 

Matrix, Rotating Structure. 
 

I.  INTRODUCTION  
 
Rotating beams are found in several engineering designs 

such as turbine blades and aircraft rotary wings. Since 
structural vibration can potentially reduce the life 
expectancy and the performance of the structure, vibration 
attenuation is desirable in many engineering applications.  
Vibration attenuation can be achieved by using  

 
Nomenclatures 
A Area of the PZT perpendicular to the 

poling direction 
Cel Electrical damping matrix 
Cp Capacitance matrix 
Mel Electrical mass matrix 
d31 Original piezoelectric coupling 

coefficient  
d(t) Temporal coordinates for electrical 

degrees of freedom 
r(t) Temporal coordinates for mechanical 

degrees of freedom 
D Electrical displacement 
e Coupling coefficient 
E Electric field 
K Kinetic energy 
KDynamic Dynamic stiffness 
R Shunt resistance 
S Strain of the beam elements 
T Stress in the beam elements 
u Displacement 
U Potential energy 
V Volume of the element 

W External work done on the system 
Greek Symbols 
ε Dielectric constant 
ρ Density of the Piezoelectric material 
ω Excitation frequency 
Ψ Electrical shape function of the 

piezoelectric element 
φ Mechanical shape function of the 

piezoelectric element 
Θ Electromechanical coupling matrix 

 
active or passive materials. Passive materials convert the 
structural deformation to thermal energy; while active 
materials cant react to the deflection in a controlled 
manner to diminish the vibration [1].  

Beams with periodic piezoelectric arrays have attracted 
more and more attention in recent years. These beams are 
conventionally designed for wave propagation and 
vibration attenuation. Piezo-materials are transformers that 
convert mechanical energy into electrical energy and vice 
versa. When they are bonded to a structure, the mechanical 
energy absorbed in the piezo-material is converted to 
electrical voltage in the poling direction of the piezo-
material device. Equally spaced piezo-actuators introduce 
periodicity into the system that can also help reducing the 
vibration in the structure’s stop bands. Extensive research 
has been done on wave propagation in periodic structures. 
Orris [2] used Finite element method to calculate the 
frequency response of a periodic beam. Shen [3] 
conducted a mathematical study to identify the Eigen-
function solution of a rotating periodic structure, more 
specifically a rotating plate. Duhamel [4] used a 
combination of wave and finite element analysis to 
determine the forced response of a rotating structure and 
proved the efficiency of the combined approach by 
comparing his results with the former mathematical 
models. Romeo [5] analyzed the response of a non-
rotating periodic beam to harmonic excitation. The wave 
propagation method was used in the study to avoid 
numerical difficulties that arise in solving the problem 
using the transfer matrix formulation. Polach [6] used 
finite element method to calculate the natural frequencies 
and mode shapes of a rotating periodic structure and 
applied the method to rotating turbine blades by 
mathematically dissecting the turbine disk into identical 
parts. The introduction of an external R-L shunt circuit 
forms a resonance with the piezoelectric capacitance and 
the frequency of this RLC circuit can then be tuned to 
eliminate or reduce the vibration in target the frequencies. 
Vibration suppression using piezoelectric pairs has been 
investigated in many cases. Thorp [7] used piezoelectric 
actuators with passively shunted resistors that were 
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periodically placed along a beam to control the 
longitudinal wave propagation. The resulting periodic 
structure was capable of filtering the propagation of waves 
over specified frequency bands called the stop bands. 
Similar studies have been done by Ruzzene [8,9], 
Hangood [10], and Kandagal [11]. Other researchers such 
as Singh [12] actively controlled a periodic structure by 
piezoelectric patches to reduce vibration of the system. 
Tang [13] used a combination of actively controlled and 
passively shunted piezoelectric actuators to control the 
vibration of a rotating periodic structure. The combined 
approach helped reducing the control effort and therefore 
the energy consumption while maintaining the necessary 
vibration control. Kaufman [14] employed a semi-active 
method to reduce the vibration in turbo-machinery blades 
with a variable rotating speed and therefore achieved a 
longer lifetime for the blades. Zhou [15] achieved 
vibration reduction in a large bandwidth by using high 
order shunt circuits but as expected a smaller amplitude 
reduction was achieved by using this method. Same 
procedures were used to reduce the unwanted vibration of 
plates. Studies done by Spadoni [16] and Becker [17] are a 
few examples. Other interesting applications of the 
concept include: noise reduction in heavy-duty trucks  
(Raju & Bianchini [18]), hybrid composites (Alderaihem 
et al. [19]), and space structures (Hagood et al. [20]). 

In this paper the transfer matrix methods is used due to 
its accuracy and a passive approach with focus on utilizing 
the periodicity of the structure for vibration attenuation is 
applied over a broad band of frequencies. In contrast to the 
other research in this paper in order to achieve broadband 
vibration reduction each piezo-electric patch is tuned to a 
different target frequency 

 
II.  MODELLING  

 
A rotating beam with periodically installed piezoelectric 

actuators on top and bottom is considered for this study 
(see Fig. 1). More details and the beam specifications can 
be found on Section 4. Here a general model for a periodic 
rotating structure is developed. This model will later on be 
adapted to the case study presented in this paper. 

Fig.1. Rotating beam with piezoelectric patches. 
 

Hamilton’s principle is used to derive the dynamic 
equation of the system:  
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Here, K represents the kinetic energy, U the potential 
energy and W the external work done on the system.  
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The dynamic equation of the piezoelectric actuators is 

described as: 
 


















−
−

=






















 −
=








D

S

h

hb

E

T

E

S

e

ec

D

T
S

E

βε  

 
    ,

     

 
   (5) 

 
Where; 

 

β = 1

ε s
h = e

ε s
b = cE + e2

ε s
   (6) 

 
Here, T is the stress on the piezo patch, D is the electric 

displacement, c is the elasticity, e is the piezoelectric 
coupling, ε  is the electric constant. S is the dimensionless 
deflection of the patch (strain), E is the electric field, the 
superscript, E, indicates that the parameter was measured 
at constant electric field and the superscript, S, signifies 
that the parameter was measured at constant strain. This 
equation introduces the piezoelectric electromechanical 
interaction into the model. The piezoelectric coupling 
coefficient (e) relates the mechanical stress in the patch to 
the applied electric field. This coupling coefficient can 
also be written with the use of the more familiar coupling 
coefficient d31 as presented in Eq. (7): 

 
Ecde 31=                                                   (7) 

 
For the piezoelectric coupling coefficientd31, the 

subscripts ‘1’ and ‘3’ refer to the direction of the applied 
field and the poling direction, respectively. Introducing the 
piezoelectric material properties Eq (5) into Eq. (3): 
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Equations 2 and 8 can be written in variational form as 

follows: 
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Substituting Eqs. (9) and (10) into Eq. (1): 
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It is necessary to make a few simplifying variables 

before attempting to solve Eq. (11). The displacement of 
the beam can be written as follows: 
 

u x,t( )= ϕ x( )r x( )                                     (12) 

 
Where row vector ϕ x( ) is the assumed to be the 

mechanical shape function of the piezoelectric element 
and r t( ) is the temporal coordinates for mechanical 

degrees of freedom. According to Euler–Bernoulli beam 
theory, strain in the beam is the product of the distance 
from the neutral axis and the second derivative of 
displacement with respect to the position along the beam. 
Therefore, the following equation can be used to define 
the strain: 

 

S = −y
∂2u u,t( )

∂x 2
= −yϕ x( )′′ r t( )    (13) 

 
The electrical displacement can be written as: 

 
D x,t( )= ϕ x( )d t( )                                       (14) 

 
Where row vector ψ t( ) is the electrical shape function 

of the piezoelectric element and d t( ) is the temporal 

coordinates for the electrical degrees of freedom.  
The case under consideration in this study is a beam 

with bimorph piezoelectric material elements on its top 
and bottom as shown in Figure (1). In this Figure 'a' is the 
hub radius. 

Using Eqs (12), (13), and (14) leads to a simplified 
equation of motion. The mass and stiffness matrices are as 
follows: 

M s = ρs
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The electromechanical coupling matrix Θ  and the 
capacitance matrix Cp  are defined as: 

Θ = − yh
VP

∫ ϕ T x( )′′ψ x( )′′ dVP     (21) 

CP = − βψT x( )′′ψ x( )′′ dVPVP
∫     (22) 

Electrical mass matrix M el( ) and electrical damping 

Cel( ) matrix are as follows: 

 
M el = AsLψT x( )ψ x( )dAPAP
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Substituting the parameters defined in Eqs. (15) to (24) 

into Eq. (11): 
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Integration of the equation produces the following two 
coupled equations, which are coupled by the 
electromechanical coupling matrix Θ. Eq. (26) defines the 
mechanical motion and Eq. (27) defines the electrical 
properties of the system: 
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Eqs. (26) and (27) represent the proposed electro-

mechanical system and can be used to determine the 
motion of the beam. The two equations can be combined 
as: 
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In this paper, the beam is composed of 3 identical 
sections. Each section has a pure beam element on the left 
and a beam element with a piezoelectric patch on the right. 
Eq. (28) is the equation of motion of the rotating piezo-
element on the right. The equation of motion for the left 
side element (element without piezo patches) can be 
written as: 

M s[ ] r t( )[ ]+ Ks + K Rot( )s[ ] r t( )[ ]= ϕ x i( )T
f i t( )

i=1

nf

∑   (29) 

By assembling these element matrices into a global 
matrix and solving for the above equations the tip response 
and the natural frequencies of the model can be obtained. 

 
III.  SOLUTION METHOD  

 
In order to calculate the natural frequencies of the beam, 

first the element matrices must be assembled to obtain the 
structural mass [M] and stiffness [K] matrices. The natural 
frequencies can found from the following: 

 

KDynamic[ ] u{ }= 0

KDynamic = K − ω 2M
     (30) 

 
Where, KDynamic is the dynamic stiffness matrix. In 

order to enforce the boundary conditions using matrix 
partitioning, the first two rows and columns of the 
structure’s dynamic stiffness matrix should be eliminated. 

The boundary conditions are the cantilever boundary 
conditions. Later the forced response can be obtained 
from: 

 
KDynamic ω( )[ ] u{ }= F{ }     (31) 

 
Where F{ } is the vector of externally applied forces 

and ω  is the excitation frequency. In an other form: 
 

u{ }= KDynamic ω( )[ ]−1
F{ }    (32) 

 
For all the cases presented in the next section, the 

excitation force is applied to the root of the beam (second 
node) and the vibration amplitude is measured at the tip of 
the beam (last node). Transfer function amplitude is the 
logarithmic ratio of vibration amplitude at the end to 
vibration amplitude at the root of the beam: 
 

Trasfer matrix amplitude = 20× log
A ln( )
A l2( )
 

 
  

 

 
    (33) 

 
In which, A l2( ) and A ln( ) are vibration amplitude in the 

second and the last node consequently. 
 

IV.  RESULTS AND DISCUSSIONS 
 
As a case study, a slender cantilever beam with 4 

identical cells was modeled using the proposed method in 
section 2. A pair of piezoelectric patches is embedded 
symmetrically at the top and bottom surfaces of the right 
hand side element of each cell. Later, a sinusoidal load 
was applied at the root of the beam. In order to 
demonstrate the effect of the structure’s periodicity, the 
uniform beam was used as a benchmark (Fig. (2)). 
 

 

Fig. 2. Different beam cases investigated. 
 
The beam is made of aluminium with specifications 

demonstrated in Table 1. 
 
 
 

a- Uniform Beam 

b- Periodic Beam 
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Table 1. Model Specifications. 
Parameter Value Unit 
Beam length 0.45 m 
Beam width 0.036 m 
Beam height 0.003 m 
Modulus of elasticity of the beam 73 Gpa 
Density of the beam 2700 Kg/m3 
Charge constant 2.37E-8 m/V 
Dielectric constant 2.1E-10 F/m 
Density of the piezo patch 7700 Kg/m3 
Modulus of elasticity of the piezo 
patch 

69 Gpa 

Piezo patch length 0.07 m 
Piezo patch width 0.036 m 
Piezo patch height 0.001 m 
 

 

Fig. 3. Uniform beam with different thicknesses. 

 
Fig. 4. Uniform beam with different hub radiuses. 

 

Some parametric studies including change in beam 
thickness, hub radius and rotational speed are investigated 
and consequently reported in Figures 3, 4, and 5. Due to 
the increase in rotational speed, the rotational stiffness 
grows which cases a shift in the natural frequencies toward 
higher frequencies. Augmentation of hub radius affects the 
natural frequencies of the rotating beam in the same 
manner. In addition an increase in thickness results in 
higher stiffness and higher natural frequencies as well.  

 
Fig. 5. Uniform beam with different rotational speeds. 

 
In order to achieve the vibration suppression in a 

specified frequency band, shunt circuit resonant 
frequencies should be tuned to natural frequencies of the 
beam at that band. While broadband vibration suppression 
can be achieved by setting the tuning frequencies to 
several different natural frequencies of the beam, narrow 
band vibration reduction can be obtainable by setting all 
tuning frequencies to a specific natural frequency. A 
change in shunt circuit resistance causes a dramatic 
change in tip response of the beam. The effect of shunt 
resistance on the beam’s frequency response and the 
optimal resistance is displayed in Figure 6. In this figure 
the tuning frequency was set to 570 Hz and the resistance 
was changed from 400 to 1200 Ohm. 

 
Fig. 6. Uniform beam with different shunt resistances. 
 
Grooving the beam and implementing piezo-electric 

sensor/actuators introduce a repeating non-uniformity to 
the beam model, which causes vibration reduction in some 
frequency bands (stop bands). By tuning the shunt 
resonance frequencies to different natural frequencies 
outside stop bands broadband vibration suppression was 
achieved (see Fig. 7). Tuning frequencies were 4000, 
5700, 6700 and 9000 Hz. In all circuits shunt resistance 
was 100 Ohm. Shunted circuits are accountable for 
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vibration reduction between 3000 and 11000 hertz while 
the periodicity caused by installing piezoelectric patches 
reduced the vibration between 11000 and 16000 hertz. 
Rotation changes the beam’s characteristics natural 
frequencies. While this change natural frequencies, 
degrades narrowband vibration suppression, the negative 
effect of rotation is not severe in broadband vibration 
suppression (see Fig. 8). For instance, introducing a 50Hz 
rotation has changed the beam’s 9 kHz natural frequency 
to 9.2 kHz but the vibration is still well damped. 

 
Fig. 7. Vibration attenuation of a non-rotating beam. 

 

 
Fig. 8. Vibration attenuation of a rotating beam. 

 
V. CONCLUSIONS 

 
In order to attenuate the unwanted vibration in rotating 

beams over a broad frequency band, a combination of 
piezo-electric actuators with shunted circuits, and stop 
bands created by the structure’s periodicity was used. The 
proposed method utilized the beam’s periodicity 
introduced by adding the piezo-electric patches, to 
attenuate the vibration in high frequencies and 
piezoelectric patches with shunted circuits to reduce the 
vibration in mid-frequencies. 

In other words, first the piezo-electric patches were 
added to the beam. This addition created a periodic 
structure, which significantly reduced the vibration in the 

high frequency region. Then piezoelectric shunt circuits 
were implemented and tuned for the mid-frequency range.  

Tuning each shunted circuit to a different frequency 
resulted in vibration reduction in a wide range of 
frequencies and at the same time reduced the sensitivity of 
the system to different rotational speeds and therefore 
eliminated the need for complicated tuning schemes or 
adaptive shunted circuits.  
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