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Abstract – The analysis of the stress state of the flexible 

orthotropic shells under the action of variable time and 
variable mechanical force on the external electric time on, 
based on mechanical and electromagnetic orthotropy. We 
investigate the effect of the thickness on the stress-strain state 
of orthotropic shell. Nonlinear deformation of current-
carrying orthotropic conic shells in the non stationary 
magnetic field is studied in ax symmetric statement. The 
results are indicative of the effect of shell thickness on the 
deformation and the need to take account of this factor in the 
calculation scheme. 
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I.  INTRODUCTION  
 
Increased interest in the problems of mechanics of 

coupled fields, primarily to electro-magneto-elasticity, 
caused by the needs of today's technological advances in 
various industries and the development of innovation 
technologies. The issues of motion of a continuum with 
electromagnetic effects fill a highly important place in the 
mechanics of coupled fields. 

One of the main directions of development of modern 
solid mechanics is a development of the theory of 
conjugate fields and, in particular, the theory of the 
electromagnetic interaction with deformable medium[8, 
10, 11-13, 14-18, 23, 24]. 

The mechanism of interaction of an elastic medium with 
the electromagnetic field is diverse and depends on the 
geometrical characteristics and physical properties of the 
body under consideration. 

In particular, this mechanism gets some specifics when 
considering the problems of thin plates and shells having 
anisotropic conductivity. 

In creating optimal structures in modern engineering, 
widespread use is made of thin-walled shells and plates as 
structural elements in which effects of nonlinear 
electromagnetic interaction with magnetic fields are 
significant. 

Effects of the coupling of mechanical displacements of 
conductive bodies with the electromagnetic field are 
conditioned by the Lorentz ponderomotive forces. 

The Lorentz forces depend on the speed of the 
conductive elements of a continuous medium and the 
external magnetic field, the magnitude and orientation of 
the conduction current in reference to external magnetic 
field. 

Significant effects of ponderomotive interactions occur 
for high frequency oscillations at large amplitudes of 

displacements, pulsed magnetic fields and current-carrying 
elements. 

It is for these conditions are first necessary to develop 
mathematical foundations of magneto elasticity and 
applied methods for solving certain classes of problems. 

Thin shells are widely used as members of advanced 
structures. 

Due to more stringent requirements to the service 
conditions of such structures, not only rigid but also 
flexible shells should be used[2, 6, 7, 25].  

Along with the development of the theory of flexible 
shells, it is also necessary to develop the theory of flexible 
anisotropic shells in the non-stationary magnetic fields[3, 
19, 20, 24]. 

Problems interaction between electro-magnetic field and 
deformed bodies are frequent in advanced technology. 
  

II.  NONLINEAR FORMULATION OF THE 

PROBLEM . BASIC EQUATIONS  
 
Flexible current-carrying conical shells of variable 

thickness, finite conductivity, excluding the effects of 
polarization and magnetization and thermal stresses are 
considered. Elastic properties of the shell are considered 
orthotropic, which main directions of elasticity coincide 
with the directions of the corresponding coordinate lines. 
Material obeys the generalized Hooke's law and has a 
finite conductivity. Electromagnetic properties of the 
material of the current-carrying shell are characterized by 
tensors of electrical conductivity σij, magnetic 
permeability jiµ  and dielectric permittivity 

jiε ( )3,2,1, =ji . 

At the same time due to the crystallophysics for the 
considered class of conducting media with rhombic crystal 
structure it was considered that the tensors jiσ , jiµ , jiε  

take a diagonal form[4, 15, 22]. 
Note that in this case, an arbitrary surface of the second 

order has three mutually perpendicular axes and the 
second order can be positioned axis parallel to the 
crystallographic axes of the second order and second order 
surface characteristic has all symmetry elements that may 
be in the orthorhombic system classes. 

Coordinate surface of current-carrying orthotropic shell 
in the unreformed state we assign to curvilinear orthogonal 
coordinate system z,,βα  assuming that the coordinate 

lines of the middle surface of the shell coincide with the 
lines of main curvatures. 
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Suppose that the geometrical and mechanical 
characteristics of the body are such that to describe the 
deformation process is applicable version of the 
geometrically nonlinear theory of thin shells in the 
quadratic approximation. 

Also we assume that the relative strength of the electric 

field E
�

and magnetic field H
�

 are performed 
electromagnetic hypothesis[1, 3, 5]. 
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where the −iu components of the displacement vector 

envelope points; −ii HE ,  components of the vectors of 

the electric and magnetic fields shell;  −iJ eddy current 

components;  −±
iH the tangential components of the 

magnetic field on the surface of the shell strength; 
−h thickness of the shell. 
These assumptions are some electrodynamic analog of 

the hypothesis of non-deformable normals and together 
with the latter hypothesis magnetoelasticity make subtle 
bodies. The adoption of these hypotheses allows us to 
reduce the problem of the three-dimensional deformation 
of the body to the problem of deformation of the chosen 
arbitrarily coordinate surface. 

To develop techniques for the numerical solution of the 
new class of related problems of the theory of orthotropic 
magnetoelasticity conical shells of revolution having 
orthotropic conductivity based on the consistent 
application of the finite Newmark schemes[21], 
linearization method and discrete orthogonalization [10, 
14, 15].  

To make effective use of the proposed methods assume 
that the appearance of an external magnetic field does not 
appear sharp skin effects on the thickness of the shell and 
an electromagnetic process coordinate quickly enters the 
mode close to steady. 

This leads to restrictions on the behavior of the external 
magnetic field and on the geometric and electrical 
parameters of the shell 
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h                        

(2)      

where the −τ characteristic time of the magnetic field. In 
case of failure to do so should be considered only the shell 
of the equation of motion by the magnetic pressure. 

In this formulation, the system of equations describing 
the time in the appropriate layer of nonlinear oscillations 
of a flexible current-carrying orthotropic conical shell of 
variable thickness, according, after application of the 
method takes the form quasilinearization. 
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The initial conditions take the form   
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000
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tswtsutsN ɺɺ
�

        
(5) 

There −θNN s , meridional and circumferential force; 

−S a shearing force; −sQ cutting force; 

−θMM s , curving moments; −wu,  displacement and 

deflection; −Sθ  the rotation angle of the normal; 

−ζPPS,  mechanical load components; 

−θE circumferential component of the electric field 

intensity; −ζB  the normal component of the magnetic 

induction; −−+
ss BB ,  known components of the 

magnetic induction on the surface of the shell; −
тс

Jθ
 

component of the electric current density from an external 
source; θees , - elastic moduli in the directions; −θ,s  

respectively; −θνν ,S Poisson coefficients, characterizing 

transverse tensile compression direction of the coordinate 
axes; −µ magnetic permeability; −ω  the angular 

frequency; 
321 ,, σσσ - the main components of the 

tensor conductivity. 
Solving boundary value problems magnetoelasticity 

theory of thin shells with finite electrical conductivity in 
nonlinear formulation it is associated with great 
computational difficulties. 

This is explained by the fact that the system, describing 
the stress-strain state of the shell-related that is composed 
of the equations of motion and electrodynamics. The 
equations of motion present volume Lorentz force, and the 
equations of electrodynamics include derivatives of the 
displacements over time. In addition, it is a nonlinear 
mixed hyperbolic-parabolic system of differential 
equations in partial derivatives of the eighth order with 
variable coefficients. The bulk of the Lorentz force-
nonlinear and vary depending on the deformation of the 
middle surface of the shell and change the time coordinate. 

 
 

III.  A NUMERICAL EXAMPLE . ANALYSIS OF 

THE RESULTS 
 
Consider the nonlinear behavior orthotropic current 

carrying conical shell of beryllium variable thickness that 
varies in the meridional direction of the law 







 −⋅= −

Ns
sh α1105 4 m.  

We believe that the skin is exposed to mechanical force 

2
3 sin105

m
NtP ωζ ⋅= , an external electric current 

,sin105 2
5

m
AtJ xe ωθ ⋅−=

 
and the external 

magnetic field TBS 1.00 =  and that the envelope has a 

finite conductivity orthotropic. 
We assume that by the electric current in the disturbed 

state is evenly distributed on the shell, the external current 
density does not depend on the coordinates. In this case, 
the combined effect on the shell loading, the 
ponderomotive force consisting of Lorentz forces and 
mechanical. Contour small radius 0ss =  hinged, and the 

second path Nss = - free in the meridional direction. 

We investigate the behavior of orthotropic shell, 
depending on the changes in shell thickness. The problem 
for orthotropic cone of beryllium variable thickness 







 −⋅= −

Ns
sh α1105 4 m calculated for different values of 

the parameter { }5.0;4.0;3.0;2.0=α  characterizing the 

variability of thickness in the meridional direction. 
The parameters of the shell and the material are: 

00 =s , msN 5,0= , )1(105 4

Ns
sh α−⋅= − m, 

mrsrr 5.0;cos 00 =+= ϕ , 1sec16.314 −=ω  
,/2300 3mkg=ρ TBB ss 5.0== −+ . �30=ϕ ,

TBS 1.00 = , mH /10256.1 6−⋅=µ , 

,/sin105 25 mAtJ xe ωθ ⋅−= ( ) 18
1 10279.0 −×Ω⋅= mσ ,  

( ) 18
2 10321.0 −×Ω⋅= mσ , ( ) 18

3 10136.1 −×Ω⋅= mσ , 

03.0=Sν , 09.0=θν , 23 /sin105 mNtP ωζ ⋅= ,  

,/108.28 210 mNeS ⋅= 210 /1053.33 mNe ⋅=θ  

The solution is found in the time interval 

sec100 2−÷=τ  for the integration time step is chosen 

to be sec101 3−⋅=∆ t .Consider the case in the anisotropy 

of the electrical resistance equal to beryllium 

.07.4
1

3 =η
η  In the following graph the figures (1, 2, 3, 

4) correspond to the values of the parameter 
{ }5.0;4.0;3.0;2.0=α . 

Figure 1 shows the distribution of deflection of the shell 
along the meridian at a time st 3105 −⋅=  for various values 
of α.  
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1 - 2.0=α ;  2 - 3.0=α ; 3 - 4.0=α ;  

4 - 5.0=α . 

Fig.1. Distribution w  by s at time sec105 3−⋅=t  for 
different values α . 

 
It was found that the maximum deflection along the 

shell arise about the meaning of the neighborhood 
.4.0 ms =  This is due to the fact that according to the 

boundary conditions of the left end is hinged and the right 
free end of the sheath in the meridional direction. In 
addition, the shell thickness ranging from the left end to 
the right end face is reduced to 2 times at α = 0,5. 
Therefore, the maximum values of deflections occur near 
the right end of the shell. 

When taking into account the effect of the thickness of 
the stress cone shell was regarded as the amount of stress 
and Maxwell stress, consider the total stressed state. 

Figures 2 and 3 shows the distribution of the maximum 
stress values ( ++ + 2222 Tσ ) and ( −− + 2222 Tσ ) along the meridian 

of the shell at the time st 3105 −⋅=   on the outer and inner 
surfaces of the shell for different parameter values α. 

Curves 1÷4 characterize the stress distribution for the 
corresponding parameter values α. 

 
1 - 2.0=α ;  2 - 3.0=α ; 3 - 4.0=α ; 4 - 5.0=α . 

Fig. 2. Distribution ++ + 2222 Tσ  by sat time 

sec105 3−⋅=t for different valuesα . 
 

 
1 - 2.0=α ;  2 - 3.0=α ; 3 - 4.0=α ;  

4 - 5.0=α . 

Fig. 3. Distribution −− + 2222 Tσ  by sat time 

st 3105 −⋅= for different values α. 

The figures demonstrate the complexity of the behavior 
of the shell, depending on the boundary conditions under 
the influence of mechanical and magnetic fields.  

It should be noted that the maximum value is observed 
in all cases s = 0.5 m and with the parameter α- the voltage 
values on the surfaces of the shell increases. 

Figures 4 and 5 show the rates of change )/( tu ∂∂  or 

acceleration )/( 22 tu ∂∂  movable along a meridian of the 

shell for the different time st 3105 −⋅=   parameter values 
α. 

From the figures it is clear that with increasing 
parameter value α and accordingly, a decrease in )(sh  

thickness, is an increase in the speed of longitudinal 
movement along the meridian. 

 
1 - 2.0=α ;  2 - 3.0=α ; 3 - 4.0=α ;  

4 - 5.0=α . 

Fig. 4.  Distribution tu ∂∂ /  by sat time sec105 3−⋅=t  
for different values α . 

 

 
1 - 2.0=α ;  2 - 3.0=α ; 3 - 4.0=α ;  

4 - 5.0=α . 

Fig. 5. Distribution 22 / tw ∂∂  by sat time 

sec105 3−⋅=t for different values α. 
 
The maximum acceleration of the radial displacement 

along the meridian having a value of ms 4.0=  which is 

related to the boundary conditions and the variability of 
the thickness of the shell. 

 
IV. CONCLUSION  

 
In this article, the associated task magnetoelasticity for 

flexible orthotropic conical shell taking into account the 
orthotropic conductivity. The effect of thickness on the 
stress-strain state of orthotropic shell.  

The results are indicative of the effect of shell thickness 
on the deformation and the need to take account of this 
factor in the calculation scheme. 
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As can be seen, of variable thickness has a significant 
impact on the change in the stress-strain state of the shell, 
and account geometric nonlinearity allows to specify a 
picture of deformation. 
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