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Abstract — This paper provides a comparison between two cognitive radios are considered as secondary users

widely used algorithms in the field of Compressiveésensing
(CS), namely Orthogonal Matching Pursuit (OMP), and
Karhunen-Loéve Transforms (KLT). As CS is one of te
most essential techniques used by a Cognitive RadioR) for
efficient usage of spectrum, it is required to be miimally
simple, and, still, fast in working. The complexityhere refers
to the No. of computations a CR is required to makavhile
using such algorithms and, this also, will in turnaffect the
effective requirement of hardware and power consumgon.
In this work, by means of simulations, we have trig to get an
insight of working both this algorithms, OMP and KLT; and
carried out the comparison between the two regardig their
performances for the same experimental setup. We ha
discussed and evaluated their performances in termsf time,
exact reconstruction of signal, percentage of errgrand,
complexity in terms of big-O, and, the probability of missed
detection and probability of false alarm. From thesimulation
results we find that the OMP is quite promising CStool as
compared with the KLT in all these different aspecs.

As the CS is applicable to wideband spectrum sengjrfor
CR and for varying sparsity environments, we are mking
comparison between the two that how the performancearies
with different values of sparsity in frequency doman. We
will carry out our further work on the bases of this work for
modifying the OMP for CS.

Keywords — CS, DWT, KLT, Measurement Matrix,

using the licensed spectrum, a crucial requirenant
cognitive radio networks is that they must effi¢clgn
exploit under-utilized spectrum (denoted as spkctra
opportunities) without causing harmful interferenoehe
PUs (Primary Users). Furthermore, PUs have no
obligation to share and change their operatingrpeters
for sharing spectrum with cognitive radio networks.
Hence, cognitive radios should be able to detect
independently  spectral opportunities  without any
assistance from PUs; this ability is called spewtru
sensing, which we can consider as one of the nisiat
components in cognitive radio networks. [2]

Cognitive radio systems typically involve primargens
of the spectrum, who are incumbent licensees and
secondary users who seek to use the spectrum
opportunistically when the primary users are idlfe
introduction of cognitive radios inevitably creates
increased interference and thus can degrade tHityepfa
service of the primary system. The impact on theary
system, for example in terms of increased intenfeeg
must be kept at a minimal level. Therefore, cogaiti
radios must sense the spectrum to detect whethiar it
available or not, and must be able to detect veegkw
primary user signals. Thus, spectrum sensing isobriee

Measurement Vector, OMP, Signal Detection, Signal MOst essential components of cognitive radio. [21]
Recovery. Sparsity, Sparsity Order. The problem of spectrum sensing is to decide whethe
particular slice of the spectrum is “available”rat. That
|. INTRODUCTION is, in its simplest form we want to discriminatevbeen
the two hypotheses,
A. Background and Related Work Ho:y[n] =w[n], n=1,N (1)
J. Mitola [1] has introduced Cognitive Radio (CR) a Hi: y[n] =x[n] +w[n],n=1,...,N. (1.2)

one of those possible devices that could be deglageSU

Where, x[n] represents a primary user’s signal,]vign

(secondary user) equipments and systems in wirelg¥gise and n represents time. The received sigmglig[

networks. As originally defined, a CR is a self asvand
“intelligent” device that can adapt itself to thereless
environment changes. This device is able to detest
changes in the wireless network to which it is @woted

and adapt its radio parameters to the new oppoieardf

spectrum usage that are detected by it. This fomality is

called the “spectrum sensing” of a cognitive radiwice.

vector, of length L. Each element of the vector] Would
represent, for example, the received signal atffareint
antenna. [21]

The novel aspect of the spectrum sensing whenetelat
to the long-established detection theory literatisréhat
the signal x[n] has a specific structure that stéom the
use of modern modulation and coding techniques in

Cognitive radio is an advanced software-definedoradcontemporary wireless systems. Clearly, since sach

that automatically detects its surrounding RF slirand
intelligently adapts its operating parameters téwnek
infrastructure while meeting user demands.

structure may not be trivial to represent, this tesulted
in substantial research efforts. At the same tithés

Since
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structure offers the opportunity to design veryicgdht
spectrum sensing algorithms. [21]

As CR networks are required to exploit the spectrum
opportunities over wide frequency range for better
spectrum utilization and obtaining optimized thropagt.
We can consider this on bases of Shannon’s formula,
according to which, under certain conditions, the
maximum theoretically achievable throughput orate is
directly proportional to the spectral bandwidth efiéfore,
the wideband spectrum sensing can help us actaegerl
aggregate throughput by exploiting more available
spectrum opportunities over a wide frequency raff]e.

Wideband Spectrum Sensing is the technique, which
suggests the spectrum that we have to sense wil tie
frequency bandwidth more than the coherent bantvatit
the channel. The typical narrowband sensing tectasiq
are limited in the way that they make use of sirgieary
decision and cannot detect individual spectrum
opportunity available in the wideband spectrum. Kiog
at the prevailing techniques nowadays, we can iffass
wideband spectrum sensing into two main classeguisy

Sanal, Estimated _
observation vector ’

# of extracted # of samples is minimized i.e.
samples>>rate of work of resources adopted to
information in Sec extract discarded samples is

wasted

Conventional Sampling mechanism

Signal - Estimated
under Sv Sampling vector
observation Sp

# of extracted samples (m) is very much less than # of
samples (n) required for traditional sampling mechanism and
is much equivalent to rate of information of signal.

Compressive Sensing

Fig. 1. Conventional Sensing and Compressive Sgifi2i]

Fig.1 exhibits the conventional sampling of datavet

(Rate based) spectrum sensing, and, Sub-Nyquise (Ras compressing sensing. Hence, the theory steed s
based) spectrum sensing. As the name suggests, #o@sible to extract a signal from minimal samples;
Nyquist (Rate based) spectrum sensing uses thelis8mphowever, the extraction of the signal can be 100%

rate for spectral estimation at or more than theuist
rate. While the other one uses the rate of sameigw
the Nyquist rate. [2]

successful if the signal is being captured a mihirate of
information. This concept foretells that the sigrial
originally a sparse or belongs to some other forim o

Recently, compressed sensing/compressive samplifignsform domain. Hence, it is important to hightig
(CS) has been considered as a promising technigue certain definitions to understand compressive senass:

improve and implement cognitive radio (CR) systeins. 1.
the area of signal processing, compressed serssorggi of

the significant technique for extracting and re¢arding

a signal by exploring the solution to underdeteemin
significant linear systems. The theory of compnessi
sensing has evolved owing to the issues in Image
Processing, Video representation, Spectrum Sensiag,
[22] As, in wideband radio one may not be abledgpuire

a signal at the Nyquist sampling rate due to theeot
limitations in  Analog-to-Digital Converter (ADC)
technology. Compressive sensing makes it possible t
reconstruct ssparsesignal by taking fewer samples than
Nyquist sampling. In general, signals of practicaérest
may be only nearly sparse and typically the wiekignal 2.
in open networks are sparse in the frequency dosiage
depending on location and at duration the percentsdg
spectrum occupancy is low due to the idle radi®k. [

It is important that an efficient technique be expt
that can minimize the amount of extracted data auth
any significant impact on quality of a signal. Téfere,
under-sampling of k-space, violates the criterioh o
Nyquist, and there are increasing evidences dhaat$ in
Fourier reconstruction process. [22]

Sparsity: Various conventional forms of signals
(image, audio, seismic data etc.) are sited in
compressed mode based on suitability or the
projection. We have found that after selecting the
basis, maximal quantities of the projection
coefficients usually become zero or very small gaju
which we neglect usually. Hence, the theory states
that if the signal has n-number of non-zero
coefficient, that signal is said to be n-sparsee Th
theory also states that if maximal quantities d th
coefficient of projection are minimal enough thad w
can neglect then only the signal can be subjedied t
compression algorithms.

Incoherence: A statistical quantity evaluates the
highest correlation between any two elements from
two different matrices. ¥ is considered to be square
matrix of size n withy, yo, ....y, columns andb is a

non-square matrix of size m x n with, ¢, .... o, as
rows, than the mathematical interpretation of
coherence is:

1 (@,7) = \n max |@y, 7 (1.3)

Where the value of j lies between one to n andevalu
of k lies between one and m. Hence, according to
linearity principle, that formulates:

1<u (@, v) <n (1.4)
Therefore, from the domain viewpoint of compressive
sensing, the focus is much on the matrix incoherenc
factor adopted in sampled or in sensed sigmnalas
well as the matrix that represents the basis where
there is a sparse signal of interest
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3. Signal Extraction: The process of extracting the[7] came as a major breakthrough in that they dgsly
signal in compressive sensing is equivalent tdemonstrated, for the first time, that, under soreey
traditional one. The mathematical interpretatiom careasonable assumptions, the solution could be fosird
be laid for the process of sensing SP consideriag S simple linear programming—thus rendering the sotuti
signal, practically feasible.

Xp = dX (1.5) Compressive sensing has three important properties.
The signal x and signal process SP are usualjrst, the encoding is blind to the content of gnai (or
represented by real number of dimension n and @ata) and has low computational complexity suitébte
respectively. The traditional sensing concepts sajgst, real-time usage. Secondly, the number of
that m should be equivalent to n in case certaialée measurements required for exact recovery is
of presence of sparse signals or compressible Isigna@pproximately proportional to sparsity of the signat its
The minimal value of m is permissible for the sagsi Size. Lastly, the decoding is adaptive in the s¢haethe
matrices that are more incoherent within the odbin quality of recovered data can improve under a fixed
domain (or even in transform domain) where th&umber measurements—or equivalently, the required
signal is quite sparse. Hence, traditional sensimgumber of measurements that achieves the sameyquali
concepts uses Dirac delta functions while thean decrease— when a more effective sparsifyings bas
problems is resisted by using Compressive sensilgcomes available. [9]

that considers random functions to speed up thel The Fundamental of Signal Detection

process of signal extraction. In signal detection, the task of interest is toidec

4. Signal Reconstruction: Majority of the existing whether the observation y was generated undeorhH,.
concepts uses non-linear techniques to recongtract Typically, this is accomplished by first forming tast
original signals in compressive sensing that istatistice(y) from the received data y, and then comparing
dependent on knowledge of basis of representati@fy) with a predetermined threshald
with a possibility of either compressible or sparse 1
signals. Hence, the basis of representation ofasign 8(3’)1;077

IS, _ The fundamental problem of detector design is to
X = X (1.6)  choose the test statisti(y), and to set the decision

In the above equation,,Xs the sparse vector thatthreshold v in order to achieve good detection
represents coefficient of product of x amd The performance. [21]

vector for measurement SP can be now represenigd Existing CS algorithms

as, Let us have a quick review of the existing teche&ju

Xp = PXy- (I.7)  and contributory studies discussed by prior litees. It is

The above equation showy as matrix of very important for investigation that what the ¢xig

reconstructed signal which is equivalentltor and is  status in the same domain be. The adoption of

of size m xn. [22] compressive sensing is not new and it has been done
already in the prior studies. Various researchaxe used

(1.8)

& Targeted this technique on various problems domains of signa
H a . @ * Stanal processing. Still there are comparatively less
T signal Measurement x implementation papers on compressive sensing dait.
» cder Xy mxn [ QX]. 1 1 1 1
ety A To get an insight we looked into different survegpprs
et made available in prominent publication like IEEE
Targeted [H o eoaree journals. _ _ .
Signal 11 x [ vector Table 1 below gives a brief overview of some pragnin
n§1 - 1 ® survey papers published in IEEE and research done i
? — Representation ~ Nx1 Compressive Sensing.
TR R _
- H - « [Hesparse Table I: A Survey on some Compression Technique}s [2
@ § — Reconstruction - (9 Authors Problem Focused Informative Limitation
o Measurtemeht matrix ¥ | nx1 Factor
) ) VAT X - ) Algorithms f No discussion
Fig. 2. Signal Extraction and Reconstruction Teghas Berger Sp%?ge e | Discussion on of prior
in CS [22] [23]-2010 estimation empirical aspects research
attempts
In CS, we can recover a signal with a spafse Performance
9 P Gilbert Sparse recovery Techniques for- | effectiveness at

representation in some basis from a small set of- N0241-2010

using sparse

each guarantee

techniques not

adaptive linear measurements [4]. A sensing madtes random matrices discussed.
few measurements of the signal, and the originghadi sparse Algorithms Only
can be reconstructed from the incomplete gndPotter reconstruction for sparse theoretical

contaminated observations accurately and someti
exactly by solving a convex optimization problenh [Bhe

| Bgl-2010

towards radar
imaging

reconstruction

illustrations.

work of Candes, Romberg and Tao [5], [6] and Donoho
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Algorithms on

No comparative

Tropp Sparse ursuit evaluation
[26]-2010 approximations purs being
techniques
conducted
Practically
Patel [27]- C(_)mpresswe Dictionary reviewed only a
2011 sensing fo_r_Patterr methods _ few _
recognition implementation
works
Compressive Existing studies No comparative
Wang ; . evaluation
[28]-2011 sensing for on compressive being
medical imaging sensing conducted
Practically
Dias [29]- Compressive Usage of reviewed only
2012 sensing trans_form . 4 .
techniques implementation
work
Image . No discussion
. . Discussed on
Mammeri compression compression on Research
30]-2012 techniques in pr gap, less focus
algorithms
sensor networks 9 on CS
Discussion of
algorithms e.g.
FISTA (Fast
Iterative onl
Hayashi Compressed Shrinkage- theore)':ical
[31]-2013 | sensing in signals|  Thresholding . :
; illustrations
Algorithms),
NESTA
(Nesterov's
Algorithm)
Smoinea | Factenn
Kaur [32]- Reconstruction techniques of 5 y
2013 techniques compressive . .
. implementation
sensing
works
Compressed EanCh.ed Only
Ender - theoretical .
sensing in Radar h h theoretical
[33]-2013 : ) discussion on . :
imaging d - illustrations
omains
Discussed
. various . .
pudewsd | AT | tnaues | o Socusson
[34]-2013 mpre reconstruction in
imaging . gap
compressive
techniques
. Studied
Compressive complexity of a
Qaisar Sensing and Reconstruction pfew
35]-2013 reconstruction techniques . .
|
algorithms implementation
studies
No discussion
Subban Real time Sparse on Research
[36]-2014 compressive representation gap, Only
tracking methods techniques theoretical
illustrations
Zhou Brief overview of Applications, Performance
[37]-2014 CS literature
Literature
review, Less
Discussion on comparison Sianificant
. different present | between CS and >lgnific
Ali [38]- ; discussion on
2015 techr_nqqes for DS.’ graphs. effectiveness of
localization of Different compressive
user through CS | techniques with pre
) sensing
issue and
parameters

algorithms e.g. convex and greedy type towardssspar
multipath channels. Gilbert and Indyk [24] are atiing
similar type of study in same year. A unique sursidy
was found in same year by Potter et.al [25] whoehav
investigated the techniques of sparse reconstructio
towards radar imaging. Tropp and Wright [26] hal&a
investigated the sparse approximation techniquése T
authors have discussed the conventional algoritargs
convex relaxation, greedy pursuits, Bayesian, bfoitee
etc., and discussed various algorithms of purséittel
and Chellappa [27] have presented a discussionr pape
towards compressive sensing and spare representhtio
2011, Wang [28] have presented an editorial for
compressive sensing with an exclusive focus on caédi
image processing. In 2012, Dias and Bandewar [29¢h
published a survey paper on compressive sensing and
discussed the existing trends in it with respecsigmal
processing. In the same year Mammeriet. al. [3Qeha
presented a review paper on image compression
techniques exclusively considering sensor networke
authors have discussed various compression schanaes
finally discussed on effective principles on congsien
for sensor networks. In 2013, Hayashi et al. [3&yeh
presented a survey paper with focus on design and
development of sensing matrix and sparsity aspects
compressed sensing. In the same year, Kaur et34l [
have presented a review paper on reconstruction
techniques. However, the study did not significayteld
any potential findings towards compressive sendtimgler
[33] has performed a study, which is almost simtiar
review work done by Potter et. al. [25]. Pudlewskid
Melodia [34] have discussed on various impediments
towards multimedia transmission with respect to
compressive sensing. Qaisar et. al. [35] have ptedea
discussion on pathway of compressive sensing from
hypothetical approach to practical approach. Sulgbaal.
[36] have investigated the algorithms for sparse
representation and compressed tracking. In 2014uZh
and Zhou [37] have presented an article on compeess
sensing that are adaptable in multimedia codingneSa
year, Ali [38] have surveyed some of the techniqaks
compressive sensing pertaining to localization] [22
Standard CS algorithms have been used to recotstruc
the original spectrum, such as basis pursuit (BP)xpd
others. In BP, it may take a long time to solve lihear
program, even for signals of moderate length.
Furthermore, when off-the-shelf optimization softevas
not available, the implementation of optimization
algorithms may demand serious effort. We may carsid
alternate methods for reconstructing sparse siginais
random measurements [10]. The DCT (Discrete Cosine
Transform) and DFT (Discrete Fourier Transform) als®
the candidates to apply for Compressive SensingcrBiie
Fourier Transform (DFT) is based on a fixed suppett
The recovery with DFT as the sparsifying basis is
suboptimal for a given signal, but it is used paplylin

In the year 2010, Berger et.al [23] have publistaed compressive sensing because it does not requireatay
survey paper towards compressive sensing exclysivelependent adaptation. [9] The Discrete Cosine Toams
focusing on the sparse channel estimation. Alorth tie even though suboptimal, has been extremely popuolar

theory,

the author

has discussed the conventionatleo coding. The principal reasons for the heasage of
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DCT are 1) it is signal independent 2) it has fadtess focus on Reconstruction
algorithms resulting in efficient implementationda8) its All the experimental based research papers have
performance approaches that of KLT for a Markov-Emphasized on implementing compressive sensing and
signal with large adjacent correlation coefficient. quite less focus on its outcome with respect to
The other family, which is called iterative greedycomplexities associated with reconstructed signals.
algorithms, received significant attention dueheit low Although reconstruction phenomenon is well defiried
complexity and simple geometric interpretation. Apaimage signals, but importance of it is found in feideo
from the Matching Pursuit (MP)[12], they include,and speech signals. A closer look into the tabdlate
Compressive Sampling MP (CoSaMP) [13], Subspadeformation will show that frequently used algonithk are
Pursuit (SP) [14], Iterative Hard Thresholding (HI5]. projection-based, orthogonal matching pursuits,stlea
Out of all these and among many algorithms desidoed absolute shrinkage and selection operator etc. kenye
recover the sparse signal, orthogonal matchinguitursthe researchers have overlooked that although such
(OMP) algorithm has received much attention for itsechniques sometimes yield faster processing, buoé rof
competitive performance as well as practical bésesuch the above-discussed technique can be wisely addpted
as implementation simplicity and low computationateconstruction of a signal.
complexity. Over the years, the OMP algorithm harggl Ambiguity in implementing Sparsity matrix
been considered as a heuristic algorithm hard to beMajority of the studies until date have considered
analyzed. Recently, however, many efforts have beaparsity as the image size, which will mean thaémwthe
made to discover the condition of OMP ensuringekact image is divided into smaller sizes (like sub-inggéehe
recovery of sparse signals. In one direction, s&idb quantity of the samples will be required to be leign
identify the recovery condition using probabilisticsize for the purpose of performing reconstructiénao
analyses have been proposed. Tropp and Gilberteshowmage. However, adoption of such techniques drlktic
that when the measurement matdx is generated at minimizes the probability of adopting compressigasing
random and the measurement size is about K logMP O with present definition of sparsity matrix in reate.
ensures the accurate recovery of every fixed KssparB. Motivation for this work
signal with overwhelming probability. [10] There are many CS algorithms being researched and
On the other hand, KLT, the Karhunkoéve transform developed. Moreover, OMP and KLT are among the most
separates the input (= noise + signal) int@romising techniques for that. There have been many
UNCORRELATED components. The KLT is most widely works and papers available on different CS tectesgbut
used in applications such as multi-spectral analydi according to the study conducted by us and as heer t
satellite-gathered images through the spectralsiga of knowledge and understanding of the authors, treereoi
imaged regions orfor compression purposesThe KLT  any other work actually that offers the comparattedy
is a unitary transform that diagonalizes the carae of a of these two algorithms.
discrete random sequence. As dispensation (quéatiza  In addition, the OMP needs the information on spars
coding etc) of any one coefficient in the KLT domaias level beforehand and the KLT is data dependentoitld
no direct demeanor on the others, this decorrelatibe interesting to check which of these two will kor
property is desirable. [11] It is also considerexl an satisfactorily for different sparsity levels in duency
optimal transform among all discrete transformselasn  domain. Therefore, we decided to work over comarin
a number of criteria. It is, used infrequently, lewer, as it the two and undertook the experimental studiesiredu
is dependent on the statistics of the sequence/en the for that.
statistics change so also the KLT. Because of digisal In addition, the sparsity in frequency domain il the
dependence, generally it has no fast algorithm. Kla8 main possible concern in CS research. When we attim
been used as a benchmark in evaluating the penfmena signal through a CS system, we assume that theitgpar
of other transforms. It has also provided an ingentor |evel is already given. This approach can fail wiee
the researchers to develop signal independent difixesparsity assumptions given are invalid due to #pars
transforms that not only have fast algorithms, &also varying environment.
approach KLT in terms of performance. With advances in CR technology implemented, the
A. 3 Research Gap secondary usage of the spectrum will also increase,
We can see that existing studies towards implemgnti making the spectrum denser. At this time, we wéd the
compressive sensing on signal processing do exi#its algorithm that can work well with varying sparsigyels.
advantages as well as limitations too. Howeverloaec We should be able to estimate the sparsity bedahséps
look into the studies being performed until theedalas address a wide range of issues:

found with an obvious research gap. [22] +  Modeling assumptions
Less Effective Survey _ _ « The Number of measurements
We came across is the survey papers till date oresdi «  The Measurement matrix

abovg as having less discussion of _prior research «  Recovery algorithms
contribution and an attempt to excavate its eWecless  pgretore, the algorithm, that is sparsity-robust a
by exploring either comparative analysis or by eKp  ovides a satisfactory signal reconstruction is,anuch

research gap. anticipated development we can look for.
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C. Contribution of this work components, the data vector ¥x is a linear combination

In this work, considering the research gap mentonef m columns from®. In the language of sparse
above, we are comparing the performances of OMP aggproximation, we say that v has an K-term reprtesien
KLT for the signal recovery for the same input spgn  over the dictionaryd. Therefore, for recovering sparse
with the same experimental scenario. We will beignals, we can make use of sparse approximation
presenting that to define a better suitable algarifor the algorithms. To identify the ideal signal s, we neted
CS for the CR systems of future, which will be wiockin ~ determinewhich columns of @ participate in the data
the scenario with varying sparsity levels. vector v. The idea behind the algorithm is to golumns

We are proposing a sparsity-robust, greedy, OMR¢easin a greedy fashion. At each iteration, we chodse t
algorithm that may prove to be promising for CStiie column of @ that is most strongly correlated with the
follow-up paper of this. remaining part of v. Then we subtract off its cdmition
D. Organization of the paper to v and iterate on the residual. One hopes ti&r m

In this paper, in section I, we will discuss abdie iterations, the algorithm will have identified therrect set
OMP and its basic spectrum-sensing algorithm. ttige Of columns.
III, we will discuss the KLT in detail. An insighitto the ~ AS we have considered, ®R‘is a sparse vector,
algorithmic complexity of the two will be presentiedthe meaning its number of nonzero components Kis smalle
section IV. In addition, the experimental set up tasults than d. The support of x is the locations of th@zeoo
for both will be discussed in section V. In sectdh the entries and is sometimes called #parsity pattern A
performance metrics and results of the simulatimnttfie common sparse estimation problem is to infer treessfy
OMP and KLT will be discussed. The section VIl ains ~ Pattern of x from linear measurements of the form

the discussion over the new proposed sparsity tdbiE? V= Ox+ W,
algorithm. The table 2 here provides us with défer (1.1)
parametric notations used throughout the paper. where® € R™is a known measurement matrixgR"
represents a vector of measurements amRlis a vector
Table II: Notations of measurements errors (noise). [39]
Parameters Description Sparsity pattern detection and related sparse &tim
X Input signal in frequency domain problems are classical problems in nonlinear signal
y Output signal in frequency domain processing and arise in a variety of applicatiortduiding
W Noise in measurements wavelet-based image processing and statistical mode
(Measurement Error) selection in linear regression. There has also been
x Estimated signal inR considerable recent interest in sparsity pattetactien in
v N x 1 dimensional Data Vector for the context otompressed sensinghich focuses on large
K g;,;/fi\fsity random measurement matrices A. We will analyze that
) N x d Sparse Measurement Matrix scenario with random measurgments. .
p
N Measurement Vector length Optimal subset recovery is NP-hard and it usually
d Signal input length involves searches over all thg)possiblesupport sets of x.
Qg Columns of the measurement matiix Thus, most attention has focused on approximatbadst
% Rows of the measurement matrix ar for reconstruction.OMP is a simple greedy methaal th
measurement vectors for OMP identifies the location of one nonzero componentaifa
& N-dimensional approximation of v time. The best-knownanalysis of the performanc@ P
for QMP _ _ for large random matrices is due to Tropp and Gilbe
m !\l-dlmensmnal residual for OMP [10,40].
’;LO :gg:’; ?Oertfool\rA(F?MP Among other results, Tropp and Gilbert show thaemvh
! the number of measurements scales as
n Error tolerance for OMP
S KarhuneflLoéve transform of x N> (1 + 5)4Klog(d) . . . (1.2)
Q KLT basis of x for somes >0, A has iid. Gaussian entries, and the
[y KarhunenLoave transform of X measurements are noise-free (w = 0), theOMP maethibd
R, Correlation matrix for KLT recover the correct sparse pattern of x with a goity
Diagonal matrix of eigenvalues for that approaches one asd aneb Ko. [39]
KLT However, numerical experiments reported in [10]
© The component of in the sefor suggest that a smaller number of measurementstitean
KLT above equation may be sufficient for asymptotiovecy
D Length of dictionary for KLT with OMP. Specifically, the experiments suggest tha
o Noise Variance constant 4 can be reduced to 2. [39]
Vi Threshold Voltage The theorem below proves this conjecture. Spedtifica
it is seen that the scaling in measurements
ll. ORTHOGONAL MATCHING PURSUIT (OMP) N> (1 + 6)2Klog(d- K) (11.3)

) ) is also sufficient for asymptotic reliable recovenjth
Signal recovery can be considered as a problemtdualomMpP provided both (n —k)and > «. The result goes
sparse approximation. Since x has only K nonzemrther by allowing uncertainty in the sparsityéék.
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It also improves upon the Tropp—Gilbert analysis by C=final decomposed signal
accounting for the effect of the noises. While Tiepp— = Take th=sprlvl
Gilbert analysis requires that the measurements Gise- * Calculate the No. of Measurements, M= (1| +
free, we show that the scaling given with constadticed _ delta)*47tntlog (N)
to 2 is also sufficient when there is noise w, e the | P&SI9" . .
ignal-to-noise ratio (SNR) goes to infinity. [39] " DesignMx N Sensing Matrip
Slgnha hi N f h basi \ =  Find N x 1 dimensional data vector ®*C
The MP (Matc ing Pursuit)is one o the basic greedy Basic OMP Algorithm
algorithms that find one atom at a time. In OM Input:
following steps of the algorithm we find the oneratthat e« The N x d measurement matxed
best matches the signal given the previously foatods. = The N x 1 dimensional data vector
While in the next step, it finds the next ote best fit the =  Thesparsity level K of the ideal signal
residual. [10] =  Maximum no. of iterations m
O The algorithm stops when the error is smaller tan _ =  Error tolerance.
destination threshold. Qutput: C AN estimates in B for the ideal sianal
O An enhanced version of the algorithm is the . Ar}ﬁ;;)rfgei'ncongmne 'rsaeé'r?]g?]ts o
Orthogonal MP (OMP) that re-evaluates the ,...d} m 9
coefficients by Least Squares after each round. »  An N-dimensional approximation,af the
O It can reliably recover a signal with m nonzerariest data b
in dimension d given O (mind) random linear *  An N-dimensional residualr=b -a,
measurements of that signal. Suppose that x is| &mocedure:
arbitrary K-sparse signal in “Rand let {x, X, | Initialize: . .
....... X} be a family of N measurement vectors. * Theindex set|# and the residualr=b
Form an N x d matrix® whose rows are the . TEe ?eé of non-zero el(ejments as empty,
measurement vectors, and observe that the| N " Theindexsen,=0, and,
. . =  |teration count t=1.
measurements of the signal can be collected in-an Hepeat'
dimensional data _vectpr ®x. Here ® is the «  The following, ‘K’ times:
measurement matriand its columns are denoted By 5 |gentify
P1y-.45 Pa- * Find the index M\ that solves the easy optimization
O Since x has only K nonzero components, the data problem,
vector vaDx is a linear combination of columns m M= argmays,..a l<raopl-
from @. In the language of sparse approximation, ve *  If the maximum occurs for multiple indices, breale t
say v is a data vector, that has an m-tem Be getterm'”'snca”y-
representation over the dlc.tlon@y . =  Add to the index set and the matrix of chosen atoms
O Therefore, sparse approximation algorithms can |be
. . . . Aﬁ—At_]_,}\,t and‘bﬁ- [q)t-lv () 7\{]
_used fpr recovering sparse S|gnaI§. To identify the We here consider tha®, is an empty
ideal signal x, we need to determimkich columns of matrix.
@ participate in the data vector v. = Aleast square problem is solved to obtain a ngwasi
O The algorithm in a voracious or greedy fashion pick estimate:
the columns. At each iteration, we choose the colum Xp—argmax|o- @ x|
of ® that is most strongly correlated with the = Calculate the new approximation of the data and|the
remaining part of v. Then we subtract off ifs new residual
contribution to v and iterate on the residual. One * raf‘_f)ptxa
. . . . ] —D— .
_rzjope_s. tr(;atr,] after m |terat|onsi the algorithm Wwilve - tet+1, and find the new indéx if t <m .
identifie .t e correct set of co umns. = The estimate for the ideal signal has nonzedicés
Algorithm 1: OMP for Compressive Sens at the components listed in, The value of the
Presentation Matrix and Sensing Matrix Application estimate  in componeftequals the,j component of
Input: Xy .
" X=wbs = Return if t>m.
= RIC=3=delta=0.36
Output: _ N
«  The N x d Measurement Matri@=0 [ll. KARHUNEN-LOEVE TRANSFORM (KLT)
= The N x 1 dimensional data vector R ) )
Procedure: The Kahrunen-Lo'eve Transform (KLT) is a classical
Initialize: transform for a signal. KLT is optimal in the senkat it
*  Wavelet Decomposition Level, K=1 completely decorrelates the signal and maximallkesa
Decompose: the information contained in the signal compacte@iits

=  Wavelet Decomposition of x, with dbl, for genergt
Sparse Representation Matrix,
Calculate:
= Measure the sparsity level, sprivl, of input us{Boi
Index method
= |f Calculate the Size of the Dictionary, N=length(

N optimality in revealing the sparsity of a signalshiould be

natural to explore the use of the KLT basis in caragive
sensing decoding. It separates the input (= noisigrtal)
into uncorrelated components. The KLT is most widel

ryused in applications such as multi-spectral anslysi
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satellite-gathered images through the spectrabtige of
imaged regions ofpr compression purposes[9]

Consider x €C", a complex-valued, wide-sens
stationary signal with mean zero (for simplicityjhe
correlation matrix of x can be computed numericaiy=
E[xx"], where the superscripted H denotes Hermiti
transpose (i.e.,"%X"). Ris real and symmetric, and th
eigen-decomposition, R QAQ", gives columns of Q the
eigenvectors of fand Aa diagonal matrix of the
eigenvalues. Q is an orthogonal matrix, thus@".

The representation s ="gis known as Karhunen/
Lo’eve Transform (KLT) of x, and we call Q the KL]
basis or an uncorrelated representation s, wh
correlation matrix has zero cross-correlation terims
other words, s fully describes x without any stati
redundancy.

The KLT matrix Q is computed from the correlatig
matrix of input signal x, & E[xx"]. Similarly, the
correlation matrix of the compressive measuremegrits
R,= E[yy"]. By compressive encoding y &x, we know:
R= E[0xx"® "] =0E[xx"] ®". So, R= ORD".

Note that®is not a square matrix. Using the pseud
inverse ")y, we can have the following expression:

an
e

{1,....,d}
An N-dimensional approximation,af the
data b

eProcedure:
Compute:
= Correlation Matrix,
Re= Epxdt,
or, Define the Covariance Matrix,
€],

where xis the data vector.

1yn T
o Li=1 %% s

Find the PSD of X, ).
Define the Diagonal MatrixA with non-increasing

entries,
A=[QIRILQI,
where, the matribxA contains the eigenvalues on t
diagonals,
(M, 2z, -, M) =diag(=[QI[RKIQ])=Sx(2tk/n).

Find the KLT fromA, as the columns of [Q] are th
basis vectors of the KLT
Find eigen values for the matrix
Sort the eigen values to remove least eigen véoto
compression
Obtain Q by eigen-decomposition of Rx A"
Reconstruct b = Q$, or s=Q'x

ose

he

>
(0]

O-

R(®y = oR, (1.1)

Here, we find that we have been compressive
measuring Rin R(®")y, which can be approximated from
y = @&, that we used to encode our data x. Thu

compressive measurement has sufficient informatmn
recover Rfrom above equation. Below is a procedure

We denote the transformed version of x as,

Y=0%x (11.2)
Since Qis unitary, it follows that,
E[Ix-2117 = Ely- 9117 = X3er Ellym- 91, (11.3)

twherey = Q%x. The key point is that the components of y

estimate KLT basis Q with compressive measurenientsare uncorrelated. Therefore, in terms of the corepts

four steps:

Algorithm 2: KLT for Compressive Sens

Presentation Matrix and Sensing Matrix Application

Input:

x=wbs
RIC=5=delta=0.36

Output:
=  The N x d Measurement Matri@®=o
= The N x 1 dimensional data vector
Procedure:
Initialize:

Wavelet Decomposition Level, K=1

Decompose:

Wavelet Decomposition of x, with dbl, for genergt
Sparse Representation Matrix,

Calculate:

Measure the sparsity level, sprivl, of input us@®@i

Index method

If Calculate the Size of the Dictionary, N=length(
C=final decomposed signal

Take tn=sprlvl

Calculate the No. of Measurements,
delta)*4*tn*log (N)

[ ]
-
J

[} M= (1

Design:
= Design M x N Sensing Matrig
Find N x 1 dimensional data vector ®*C

KLT-based CS

Input:
The N x d measurement mat@x=d

The N x 1 dimensional data vector

Output:

An estimatet in R? for the ideal signal

A index setA,, containing m elements fror|

n

Copyright © 2016 1J

(Y1, Y2..-,Wn) @ simple answer can be given. First, if the
component y is retained, then clearly its corresponding
estimate ig,, = ym . However, if y, is not retained, then
its corresponding estimate jis, = 0; none of the other
components of the vector y contain anything relévan
about y,. The best k-dimensional approximation space is
therefore easily found in terms of y. Denote thieoe¢he
k-indices corresponding to the retained componehtg

by T . Then, the incurred distortion can be expressed a

E[l[x-2|1°] = X,,c,c AN. (11.4)
Wheret® denotes the complement of in the set {1,

, N}. Hence, the best k-dimensional approxiorats
given by the eigenvectors corresponding to therdselst
eigenvalues.

After the sparse representation consideration for
reconstruction we have to, signal vectoreRN can be

).expanded in an orthonormal basisK*%in the form of x
= Qs. If the coefficients & RN have at mosk non-zero

Jcomponents, we are calling x fasparse signal with
respect to Q, andQ is the correlation matrix of KMany
natural signals, we can represent, the same way as
sparse signal in an appropriate basis. With a iinea
measurement matrig™ ** | N«d, CS measurements of a
k-sparse signal x are collected in the form of yx =
DdQs. If A2 ©Q satisfies the Restricted Isometry Property
(RIP), then the sparse coefficient vector s carebevered
accurately (with very high probability) via the lfalving
linear program,

§ = arg ming |[3][,, , subject to y®Qs.

(I11.5)
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Afterwards the signal of interest can be reconstdiby, eigenvalue amplitude), are used to transform each-z
X = Q8. meaned vector:
Vi = VI (%emy). (IV.2)
V. COMPARISON BETWEEN OMP AND KLT
V. THE EXPERIMENTAL SETUP
Here, both the OMP and KLT use the sensing matrices
for compressive sensing. We carried out simulations for checking the
In OMP, we define the length of measurement veloyor performances of KLT and OMP for signal recovery for
defining the no. of measurements in our simulativat spectrum sensing purpose. Our main aim presentty is
determines the no. of columns or no. of iteratitmsake provide comparison between the two basic algorithms
place. The algorithm picks the columns in a greedgased on the obtained results and the related works
fashion here. At each iteration, we choose thengonlof®  suggesting modifications in basic OMP algorithm, witk
that is most strongly correlated with the remaingagt of propose a new modified algorithm for OMP.
v. Then we subtract off its contribution to v atetate on The simulation was carried out on Matlab 2011bivers
the residual. One hopes that, after m iteratiomg tfor both the algorithms. The system was having the
algorithm will have identified the correct set olunns. processor Intel Core i5, M460, with a 64-bit OSd &153
Here if a K sparse signal is there, the no. ofittens are GHz Clock Speed.
defined to be equal to K. Therefore, we can defetation We shall consider, at baseband, a wideband spectrum
between the no. of measurements and the no. atidtes range [0 MHz —60 MHz] containing 30 channels of BIM

from the relation between the no. of measurements aeach and encode it as ¢ = c1, c2, ..., cn; where30.=
sparsity level. Every channel may be possibly occupied by a Primary

For KLT, we are decomposing the signal by removingser (PU) using digital modulation scheme eitheiPBK
the eigenvectors that are columnsof the correlatiatrix. or 16-QAM. Therefore, the symbol rate will be 2 MHz
The matrix is sized normally N x N representing dtems number of samples per symbol will be 16, and nunaber
of the signal in form of the eigenvectors. The basethe symbols in a frame can be chosen to be 512. Heee, w
KLT are the eigenvectors of the auto. Assuming Bas  shall consider the Nyquist sampling frequency, 128
the auto of the signal X, when the KLT is calculatwer MHz and the sampling number, N = 8192.
the vector X, the Rcan be estimated by, R <XX'>. Let We took the readings over a span of 60 MHz havihg 3
A be a matrix whose columns constitute a set ahannel components having the BW of 2 MHz each. The
orthonormal eigenvectors of Rso that QO =l and; TR  simulation parameters are tabulated in Table 3.fige
= QAQ" Where A is the diagonal matrix of non-null demonstrate the sub-Nyquist rate reconstruction
eigenvaluesA = diag {4, A2,... ). For every vector X, performance using Fig. 5. Let number of samples per
through the matrix ® , we can obtain the sparsesymbol be M = 16 and let N= Sampling No. = 8192for
coefficients vecto® as:® = Q" X. Gaussian random matrix for an AWGN channel. Fig. 5
We decompose X’s correlation matrixiRto Q™ A*Q. shows the results from OMP and KLT for different
Then we create the N x (N-r) diagonal mathixthat has sparsity levels and the time required for simutatfor
the effect of removing the columns of Q that cquoesl to each and signal recovery in terms of correlatiotwéen
the smallest diagonal entries in D. These smadlagies the input and output.
in D should make up (1-err) % of the total valueDof
Now, Q™*x will transform the highly correlated signal x,  Table Ill: Simulation Parameters for OMP and KLT

into one with no correlation. Then™Q™x will throw Comparison

away the least significant entries in™@. This (A™*Q™) Parameter Value

will be our compression matrix. The correspondifghe wide Band Spectrum Band 60 MHz

decompression matrix will be Q (or equivalently, @F.

So in a real system, we would predetermine A*Q1, | No. of Channels 30

the compression matrix, and=Q* A, the decompressior] Band Width of a single channel 2 MHz

matrix, based the assumption that our future sipaal a | Modulation Scheme 16-QAM

known correlation matrix. We right multiply the s x

by T, send the signal (which has N-r samples imist?a\l No. of Samples per Symbol, M 16

samples), receive it, right multiply it by’ Tand we have| NO- of Symbols per Frame 512

our reconstructed signal. All of this compressiohSampling No., N 8192

decompression can me modeled by™*TFx, or Sampling Frequency, Fs 128 MHz

equivalently Q*A* A™Q™ = Q* A*Q™, whereA’ = A* R 5 dB

A'. A” is the diagonal matrix with zeros in the diago a$ -

entries corresponding to the thrown away column€of Sensing Parameters

and ones in the diagonal entries correspondinghto |[tWavelet Transform (as Sparsifying Daubechies

retained columns of Q. Channel Type AWGN
Here, the KLT kernel is a unitary matrix, Q, who‘,%ensing Algorithm Basic OMP, KLT

columns, vectors (g (arranged in descending order &f

Copyright © 2016 IJEIR, All right reserved
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VI. THE PERFORMANCE METRICS AND Performance Analysis: _ _
RESULTS To evaluate efficiency of the algorithm, it can th&en

into account properties of the algorithm (comphexit
velocity or speed, memory consumption), the amaint
compression, and that how closely the reconstnuctio
embles the original signal. In this work, wel idcus
on the complexity of the algorithms, speed, and, a
guantification of the difference/ similarity betwedhe
original signal and its reconstruction after conggren.
Moreover, the probability of missed detectigp, Bnd, the
probability of false alarm # or their average across
channels, are among the prominent performance c¢getri

The results are depicted here in form of graphpbets
for both OMP and KLT, for different sparsity levels
These are expressed in terms of the Time taken
simulation (sec) and the Correlation between tpetiand
output of the algorithms.

Here the time taken for the simulation by its natself
defines the speed of the algorithm on an averapges T
shows how quickly the algorithm succeeds in redager
the unknown input spectral component when implestent : ! :
in a cognitive rgdiopworking aspa secondary uzet ian Used to characterize the wideband sensing perfarenah

indicates how fast the particular algorithm will bet of these algorithms.

the two we have considered. THE PARAMETERS AFFECTING THE SENSING
The correlation between the input and output on tfRERFORMANCE:

other hand, is used here to show how much theitidgor ~ Before we can analyze the performances of these two

succeeds in recovering the unknown input spectrum.  algorithms and compare them, we must get the ibsifih
The correlation is derived for both the algorithosing the experimental parameter considerations used foere

the xcorr and mscohere commands in Matlab. It ive¢ ~Performing the sensing. _ .

by taking the root, mean and square of the twowstp AS we have applied the wideband signal to the

obtained by the two commands. The xcorr gives th@gorithms, for compressed sensing, it is requited

correlation between the two signals (here the igmd sparsified and then sensed by measurement matreseT

output spectrums) in terms of cross-correlationvben two actions affect the sensing performance of the t

the two random processes. On the other hand, tﬁ@orlthms. Therefore, we will have to be introdiite the

mscohere finds the magnitude squared estimate eof thasics of the two actions we perform. Let us haveiak

input signals x and y (here the input and outpetspms) 00k into these two: -

indicating how well the two signals correspond axre IThe Sparsifying Basis (DWT) _ .

other at each frequencies. For both this algorithms, we sparsify the signdbbe
The sparsity level is measured here using the Giapplication to the algorithms. This is done to miluire

Index. As the Gini index is one of the most rekablthat the signal under consideration is sparseuia sense.

measures for sparsity’ we have Opted to use it here We have used the Discrete Wavelet Transforms (DWTS)

Gini index is used to express the percentage akitpa as sparsifying basis. It has its own excellent spac
that gives its value in true sense. It is one @ thost frequency localization property. Application of DWM

reliable measures for sparsity, 1D signal corresponds to 1D filter in each dimensithe
4 ovN Xkl (N-k+1/2 use of DWT as sparsifying basis enables the remafval
Gl (x) = 1-2 Y= ||x||11( N ) (vV-1) blocking artifacts.

Dilations and translations of the “Mother functibroy
“analyzing wavelet'y(x); define an orthogonal basis, our
wavelet basis:

Wsn(X) = 2532 - ). (V.2)

The variabless and| are integers that scale and dilate
the mother functiony to generate wavelets, such as a
Daubechies wavelet family. The scale indéxdicates the
wavelet's width, and the location indegives its position.
Notice that the mother functions are rescaledddated"
by powers of two, and translated by integers. Whakes

Here the vector £ [f(2), f(2), ....... , f(N)] is given with
its elements re-ordered and representegpfof k = 1, 2,
..... , N, where [f[1]E |f[2]], .....,< |fIN]|, and [[l}1 is the
norm of the function.f

The Gini index possesses the values between 0So, 1.
percentage representation required multiplicatioith w
100.For us, Sparsity K, is,

Table IV: Sparsity Conversion corresponding to GINI
Index representation

wavelet bases especially interesting is the swiflaiity

Gini Index No. of Active Spectrum caused by the scales and dilations. Once we knoutab
10¢ 1 EZg]mother functions, we know everything aboutlihsis.
79.3103 7 To span our data domain at different resolutiohs, t

62069 12 analyzing wavelet is used in a scaling equation:
41.3793 18 W) = 321 (1) hieyath(2x + k) (V.3)
whereW(x) is the scaling function for the mother function
20.6897 24 v, and h, are the wavelet coefficientsThe wavelet
coefficients must satisfy linear and quadratic t@ists of
0 30 the form
Tizo hie = 2, ZRZ0 hychyeyor = 2810 (vV.4)
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where dis the delta function antis the location index.
One of the most useful features of wavelets is dhgse
with which a scientist can choose the defining ficehts

continuous function may be uniquely projected otite
wavelet basis functions and expressed as a linear
combination of the basis functions. The collectioh

for a given wavelet system to be adapted for angivecoefficients which weight the wavelet basis funasio

problem. The Haar wavelet is even simpler, amsl dften
used for educational purposes. [42]

It is helpful to think of the coefficients ¢h....h,} as a
filter. The filter or coefficients are placed

when representing an arbitrary continuous funcioa
referred to as the Wavelet Transform of the given
function.

in a For the Daubechies wavelet transforms, the scaling

transformation matrix, which is applied to a rawtada signals and wavelets have slightly longer suppares,

vector. The coefficients are ordered using two chami
patterns, one that works as a smoothing filtere(lk
moving average), and one pattern that works togbout
the data's “detail" information. These two ordesirgg the
coefficients are called guadrature mirrorfilter pair in
signal processing parlance.

Now, let's look at how the wavelet coefficient nrais
applied to the data vector. The matrix is appliedai
hierarchical algorithm, sometimes called pgramidal

they produce averages and differences using justva
more values from the signal. This slight changeyewer,
provides a tremendous improvement in the capadiliti

The input Daubechies Wavelet as mother wavelet is
divided into 8 non-overlapping multi-resolution sodnds
by the filters, namely dbl, db2, db3up to db8, wehdl is
acronym for Daubechies. The sub-band is processed
further to obtain the next coarser scale of wavelet
coefficients, until some final scale “N” is reach&tihen a

algorithm. The wavelet coefficients are arranged so thatignal is decomposed into 8 levels, the db6 sultban

odd rows contain an ordering of wavelet coefficsetitat
act as the smoothing filter, and the even rows aordn
ordering of wavelet coefficient with different sgythat act
to bring out the data's detail. The matrix is fagplied to

the original, full-length vector. Then the vectos i

smoothed and decimated by half and the matrix [ieg
again. Then the smoothed, halved vector is smoptred

halved again, and the matrix applied once mores Thi
process continues until a trivial number of “smeoth
smooth- smooth..." data remain. That is, each matr

application brings out a higher resolution of tla¢adwhile
at the same time smoothing the remaining data.otitygeut

signal best reflects the original signal, sinceoaditig to

the wavelet theory, the approximation signal aellev is

the aggregation of the approximation at level nits fghe

detail at level n-1. [41]

This wavelet type has balanced frequency responses

but non-linear phase responses.

* They use overlapping windows, so the high frequency
coefficient spectrum reflects all high frequency
changes.

These wavelets are useful in compression and noise
removal of audio signal processing.

For N €N, a Daubechies wavelet of class D-2N is a

of the DWT consists of the remaining “smooth (&tc.)functiony = yye L? (R) defined by,

components, and all of the accumulated

components. [42]

We have used dbl-db4 of Daubechies family of waveleoefficients satisfying the conditions N-1.

transforms as sparsification basis for our expensmenNe

have observed the effects of using these all on t

performances of both the OMP and KLT.

Application of DWT in 1D signal corresponds to 1DXirzi " huhi-z = {0 ifl%0

“detaill(x) == V2 ¥ (= 1) hyy_g—k 9 (2x — k). (V.5)
Where R, . . . , hy.a €ER are the constant filter
=0 hax = % = Y20 hakea- (v.6)
€As well as for 1= 0,1,.... , N-1,
1,ifl=0 V. 7)

filter in each dimension. The Daubechies waveleind wherep = Ng : R — R is the (Daubechies) scaling
transforms are defined in the same way as the Hagfction (sometimes also “scalet” or “father watdle

wavelet transform by computing the running averages
differences via scalar products with scaling signaihd

wavelets. The only difference between them condgists @ (x) = V2 X2¥ 1 h, (2x — k).

how these scaling signals and wavelets are defined.
The wavelet function (mother wavelet) is orthogotual

all functions which are obtained by shifting the thew

right or left by an integer amount and the mothevelet

given by the recursion equation,

(V.8)
And obeying,

ex) =0, forx e R \[0, 2N-1]. (V.9)
As well as

Jo @(2x=K)(2x—1dx = 0, for k (V.10)

is Ol’thOgonal to all functions which are Obtaine¢ b There are N equations given by the Orthonorma“ty

dilating (stretching) the mother by a factor ¢f(2 to the
jth power) and shifting by multiples of; Zinits. The
orthogonality property means that the inner prodiiche
mother wavelet with itself is unity, and the inpepducts
between the mother wavelet and the aforementiohéid s
and dilates of the mother are zero. The collectibn
shifted and dilated wavelet functions is called avelet
basis. The grid in shift-scale space on which tlawelet
basis functions are defined is called the dyadid. grhe

conditions (V.7). Together with (V.6) this givestiotal N

+ 2 equations for the 2N filter coefficientg iHence, for N
= 1, they are over-determined, for N = 2 they an&jue
(if they exist), and for N > 2 they are underdetiaed.

However, once the filter coefficients are given,.GV
demonstrates the existence and uniqueness of ddugc
satisfying (V.8) and the normalization conditiorRR = 1,

for a given sequence of,h . ., hy-1. [43]

The computational complexity of applying DWT basis

orthonormality of the Daubechies wavelets has & vefor sparsification one time is equivalent to O(Wpere N

important mathematical and engineering consequeme:

is the no. of time samples.
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Restricted Isometry Property and the No. of

measurements

that if the size of the problem (N) doubles thearfomes
as much working storage will be needed.

As an alternative to coherence and to probabilistoMP:

analysis, a large number of algorithms within thealler
field of CS have been studied using the restrictecetry
property (RIP) for the matri®[16]. A matrix ® satisfies
the RIP of order K if there exists a constast(0,1) such
that,
1= 8)|lxl| < [lexI]} < (1 +8)|IxlI3, (V.11)
holds for all x such that || K [17]. In other words®
acts as an approximate isometry on the set of ke that
are K -sparse. Much is known about finding the roesr
satisfying the RIP. For example, if we draw a randé x
d matrix ® whose entries¢; are independent and
identically distributed sub-Gaussian random vaespl
then provided that
N = O(Klog(d/K)6?2) (V.12)
with high probabilityp will satisfy the RIP of order K
[17]. When it is satisfied, the RIP for a matriopides a
sufficient condition to guarantee successful
recovery using a wide variety of algorithms [16].
The No. of measurements is decided based on
criteria of noise present in the measurement mdfrithe
noise is absent, i.e., the measurements are es®rthe
no. of measurements can be considered to be

N>(1+0)4Klog(d). (V.13)

While we expect the noise to be present, the No. 519

measurements can be,

N > (1 + §)2Klog(d - K). (v.14)
The RIC (the Restricted Isometry Constaidthere, was
taken to be 0.36.

spar

At each stage, OMP computes residual correlatiods a
solves a least-squares problem for the new solution
estimate. OMP builds up the active set one eleratmt
time. Hence, an efficient implementation would
necessarily maintain a Cholesky factorization ef slctive
set matrix and update it at each stage, therelciregl the
cost of solving the least-squares system. In tktateps of
OMP would take at most #8+knN +O(N) flops. Without
any sparsity assumptions on the data, OMP takewstt n
steps, thus, its worst-case performance is bourijed
4n’/3+r’N +O(N) operations.

Three main points are there: (1) that in each efghe
algorithm, the residual vector can be written amatrix
times a sparse signal, (2) that this matrix sassthe RIP,
and (3) that consequently a sharp bound can bblisktzd
for the vector hof inner products. The RIP of order K+1
ég/ith 3< 1(3VK)) is sufficient for OMP to recover exactly
any K-sparse signal in exactly K iterations. [17]

t é-mwever, for restricted classes of K-sparse signals
a ose with sufficiently strong decay in the nomzer
coefficients), a relaxed bound on the isometry tamtscan

be used. If we wish to use the RIP of order K+laas
sufficient condition for exact recovery of all Kape
ignals via OMP (as we have), then little improvatnis
possible in relaxing the isometry constaft above
1/(3VK). In particular, there exists a matrix satisfyitige

RIP of order K+1 with5<1/~/K for which there exists a K-
sparse signal that €R" cannot be recovered exactly via

THE METRICS FOR EVALUATING THE SENSING iterations of OMP. [17]

PERFORMANCE OF THE OMP AND KLT:

Here we have focused on the computational complexi

of the algorithms, speed, and, a quantification thuf
difference/ similarity between the original sigraid its
reconstruction after
sensing. Also, the probability of missed detecti®p,and,

the probability of false alarm,zPor, their average across

channels, are some of the prominent performanceianet
used to characterize the wideband sensing perfarenah
these algorithms.

We will now have a brief analysis of these perfancea
metrics for the algorithms under consideration.
Computational Complexity:

Normally the computational complexity is equivalént
the no. of steps an algorithm takes to solve tloblpm as
a function of the input size.

the application of compressiv

As we know, the no. of measurements is N
p(KIog(d/K)/az) based on RIP condition to recover the K-
Sparse signal, we see that finding a matrix satigfyhe
RIP of order K+1 with an isometry constait 1/(3VK)

g/ill likely require N O(Klog(d/K)) random
Mmeasurements. [17]

However, if one wishes to guarantee exact recoeéry
all K-sparse signals via OMP, then there is litdem for
further reducing N. When N K*2, for most random N x d
matrices® there will exist some K-sparse signals®"
that cannot be recovered exactly via K iteratioh®®IP.
[17]

Tropp and Gilbert have shown that when the number o
measurements scales agI{ll +3)4K log(d) for some >
0, A has i.i.d. Gaussian entries, and the measureanaee
noise-free (w = 0), the OMP method will recover the

However, we can classify the complexity as Tim&orrect sparse pattern of x with a probability that

Complexity and Space Complexity.

approaches one as d and-Kw. [39]

Time complexity — The number of steps required by afCLT:

algorithm varies with the size of the problem is@ving
in the way. Time complexity is normally expressedaa
order of magnitude, e.g. O(N*2) means that if tize sf
the problem (N) doubles then the algorithm willdakur
times as many steps to complete.

The KLT has no structure since it depends on the
autocorrelation matrix of the input signal. The
implementation of KLT involves the estimation ofeth
auto-correlation matrix of the data sequence,
diagonalization, and the construction of the basistors.

its

Space complexity- The amount of storage space requirederefore, the basis vectors are depended on gmelsi

by an algorithm varies with the size of the probli&ns
solving in the way. Space complexity is normall

which cannot be predetermined, and must be conhplete

Jepeated whenever any new data is added. The KLT

expressed as an order of magnitude, e.g. O(NAthea{equires much of computation time for the eigenwect
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decomposition; some approximated approaches lIterative numerical algorithms for approximatingt® of
overcome this problem are required to be developbd. polynomials exist, such as Newton's method, but in
coefficients in the KLT domain are sparse by natré¢he general, it is impractical to compute the charastier
KLT domain, we can use a heuristic choice of K=k+ polynomial and then apply these methods. One resson
when the improvement in the accuracy of ththat small round-off errorsin the coefficients tfe
reconstruction is achieved. [18] characteristic polynomial can lead to large erriorghe
The correlation between the input and output obthin eigenvalues and eigenvectors: the roots are an
with KLT is much better than that achieved with @&IP. extremely ill conditioned function of the coeffiqies.
However, as the results show, that decreases wNumerical computation of eigenvectors

increasing density of spectrum components. Once the eigenvalues are computed, the eigenvectors
Given a typical signal x such as the signal recefvrem could be calculated by solving the equation
a wideband channel, if Q is the KLT basis of xjtlig is  (A-Al) vi;=0 (v.15)

guaranteed to be highly sparse for any x. Decoglifly  using Gaussian elimination or any other method for
the KLT basis in general can use fewer measurententssolving matrix equations. However, in practicabkeuscale
achieve the recovery accuracy, and more impowtantl eigenvalue methods, the eigenvectors are usually
can work with any signal. However, the KLT basisldda- computed in other ways, as a byproduct of the egee
dependent. This means that it needs to be updeted f computation.
time to time if the signal is non-stationary. Taluee What is remarkable here is that for effectively Igjom
required measurements in recovering an updated Kithe KLT as the tool for CS, we have to implement
basis, we shall still exploit whatever sparsity #ignal eigenvector removal and eigenvalue decompositiond;, a
may possess in some domains. Fortunately, we cdateip for doing that we have to apply iterative methods f
the optimal basis relatively infrequently, thatvge only computing them.
do this after the signal has changed substantidlly.can This is the main point here, that even KLT is also
make effective use of optimal KLT basis in compness requiring the iterative methods for computationafl
sensing decoding, in spite of the fact that KLTsignal makes it more complex as well as more time consgmin
dependent and needs to be updated from time to 9 It has slow speed in seeking the transform from the
In the KLT we are applying a measurement matrix ccorrelation matrix constructed by given trainingad@he
the size Nxd and then the N x N correlation matsix larger the scale or dimension of the correlatioririxas,
applied which represents the N eigenvalues aithe slower the speed of computing the eigenveaarbs
corresponding N eigenvectors for decorrelatingdigeal hence transform is, and then so is performing cesging
components and decomposition. The basis vectotheof or encoding transform.
KLT are the eigenvectors of the correlation matrix. The time complexity of the operations is analyzed a
If we take the smallest r eigenvalues and zero thetn follows, where no distinction is made between a
leaving err% of the sum of eigenvalues, then s, rmultiplication and an add operation:
realization of S will be compressed by a factoN&N-r), + Form the mean vector with O(MND) element-wise
and contain err% of the energy of the original algn operations. Calculate the set of outer products and
The KLT comprises three distinct processing stadgs:  sumY¥¥-1x, x7, in O (MND?).
covariance formation, 2) eigenvector calculationd &) « Formm,mZ; subtract matrices to find,C and find the
eigenspace transform. [20] eigenvectors of C The eigenvector calculation is
Numerical computation of eigenvalues: O(D? . Convert the xto zero-mean form in O (MND).
As we already know, for using KLT as the Compressive Form the y by O(MND?) operations.
Sensing tool, we have to apply the eigenvalue Here, M is the no. of rows, N is the no. of colgamd
decomposition first and eigenvector removal. Weehav D is the rank of the matrix.
used the eigenvector removal method here. For that, The complexity, therefore, can be considered to be
computation of eigenvalues and eigenvector is to be O(MND) + O(MND?).
carried out. The lack of a general fast algorithm, because the
Suppose that we want to compute the eigenvalu@s otovariance matrix eigenvectors must be found inryeve
given matrix. If the matrix is small, we can comptitem case, makes it pressing to find a suitable parallel
symbolically  using  the characteristic ~ polynomialdecomposition, though some iterative algorithmso als
However, this is often impossible for larger magsicin  exist. It, therefore, suggests that the KLT alsquiees
which case we must use a numerical method. iterative methods for fast implementation. This emk in
In practice, eigenvalues of large matrices are nohe sense similar to that of the greedy algorithms.
computed using the characteristic polynomial. Catngu Since it is data dependent and requiring the iterat
the polynomial becomes expensive in itself, andcexamethods, for the same level of complexity of waitke
(symbolic) roots of a high-degree polynomial can b&LT requires more computations as shown above.
difficult to compute and express: the Abel-Ruffini There is no unique KLT for all random processes iin
theorem implies that the roots of high-degree (8lmve) is, in general, not possible to find a fast (FFie)y
polynomials cannot in general be expressed simphlgorithm to compute the transform coefficients.
usingnth roots. Therefore, general algorithms to find
eigenvectors and eigenvalues are iterative.
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Fig. 5. The curves depicting comparative complegitf various algorithms with respect to no. of sueaments

Table V: Run-times of OMP and KLT with Measurembfatrix with and without noise

No. of

Sparsit Active No. of Time Time Time Time

?GI) Y | spectrum Measurements (OMP- (KLT-Noiseless | (OMP-MM (KLT-MM with

%) Component N | Noiseless MM) MM) with AWGN) AWGN)

0 s (Out of (sec) (sec) (sec) (sec)
30)

100 1 8 0.0063 0.008115 0.028627 0.008219
79.3103 7 55 0.006385 0.014684 0.008195 0.025053

62.069 12 97 0.005808 0.022116 0.008413 0.041528
41.3793 18 145 0.005885 0.026397 0.00825 0.049071
20.6897 24 193 0.006466 0.034693 0.008402 0.076821

0 30 242 0.006208 0.042193 0.008253 0.071453
0.09 _ 2. The no. of measurements that were calculated
0.08 & Noiseless based on the sparsity level.
MM OMP
gg; This parameter defines the speed of the algoritm f
' —®—Noiseless  gplyving the given problem. Here, we consider the
0.05 MM KLT . .
004 sensing of the spectrum and Qetectmg the spe_mtai;
003 ompwit &S our main tasks; as the device, using theseithigr
aweN-m  for spectrum sensing will be a Cognitive Radio devi

0.02

0.01 _
—3— KLT with

0 AWGN-M
8 55 97 145 193 242

Fig. 6. The Run-times of OMP and KLT with

Measurement Matrix with and without noise

The Execution Time or The Run Time of the

algorithms:

The Run time for the algorithms was observed fay tw

types of criteria:

1. The wavelet basis and level of decomposition
applied for the sparsification process, and

and a non-licensed secondary user (SU).
In the dynamically changing environment of spectrum
usage and allotments, it will be necessary to sémse

spectrum and detect the opportunities for spectrum
reuse, and make decisions quickly, within the least
possible time duration. Hence, we consider the Run
Time of the algorithm or Execution Time is one loét

most important performance metrics.

Tables VI (a-b): The time required for executiorOMIP (a-Left) and KLT (b-Right) with Measurement la without

Noise for different DWTs applied as Sparsifying Bas

Sparsity Time Time Time I;r:(?) Sparsity ?sneli) ?sneli) Time I;r:(?)
(%) (sec) (dbl)| (sec) (db2)| (sec) (db3) (dba) (%) (db1) (db2) (sec) (db3 (dba)
100 0.0069065| 0.0067543 0.00615¢8  0.0065P9 100 0.006868| 0.007634 0.009491.0084661

79.31 0.0063794| 0.0055374 0.006488%2 0.0066b9 79.31 0.014681| 0.014447 0.0153¢8.0142399
62.07 0.0060973| 0.006141% 0.0071015 0.00612 62.07 0.022149| 0.019695 0.020844€.0257737
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41.38 0.006794 0.00638 0.006427H 0.0070*15 41.38 0.026274| 0.028314 0.0238970.0271049
20.6897 0.0066214 0.0067539 0.0063435 0.006659 20.6897 | 0.030036| 0.031567 0.0392730.037895
0 0.0054575| 0.0064847 0.0057184  0.006596 0 0.044272| 0.039862 0.0375020.047135
0.008 0.05
0.007 - —&—Time 0.045 —o— Time
0.006 +— ] - (sec) 0.04 (sec)
X <% (db1) 0.035 (db1)
0.005 —8— Time 0.03 X —8—Time
0.004 (sec) 0.025 (sec)
0.003 (db2) 0.02 - — (db2)
0.002 Time 0.015 Time
0.001 (sec) 0.01 - (sec)
o (db3) 0.005 - (db3)
S N A ® Ao %— Time ° (TS'L"CT
SR SN Y
ST T W @*"b Ezebci) & «q?? @}9 Q?f" WQ%’Q’ © (dba)

Fig. 7. (a-b): The time required for execution &fiP (a-Left) and KLT b-(Right) with Measurement Matwithout
Noise for different DWTs applied as SparsifyingsBa

Tables VII (a-b): The time required for executidrOMP (a-Left) and KLT (b-Right) with Measuremenglvix with
AWGN for different DWTs applied as Sparsifying Bas

Sparsity Time Time Time '(I'islzce) Sparsity -I;isn‘;i) -I;isn‘;i) Time (sec) -ggce)

(%) (sec) (dbl)]| (sec) (db2)| (sec) (db3) (dba) (%) (db1) (db2) (db3) (dbd)

100 0.0247835| 0.0317876| 0.0285245| 0.029414 100 0.0089002| 0.0014397| 0.0125407| 0.009996
79.31 0.0088185| 0.008502% 0.0077845 0.0076| 79.31 0.0284509 0.024552B 0.02477R4 0.022437
62.07 0.0077475| 0.0083158 0.0080823 0.0095| 62.07 0.0509852| 0.035190L 0.04250f6 0.037429
41.38 0.0079527| 0.008278] 0.0081015 0.008d 41.38 0.050227| 0.047829¢ 0.0500714 0.048156
20.6897 0.0067744 0.0102749 0.007384  0.00 20.6897 | 0.1178214 0.0642845 0.0645933 0.060p84

0 0.0069868| 0.008430% 0.00632f1 0.0112 0 0.069132| 0.072824 0.07402 0.06983

0.035 0.14

0.03 - 0.12

0.025 - —&—Time 0.1
(sec)

0.02 (db1) 0.08
—&— Time

0.015

0.01 -+

0.005

(sec)
(db2)

Time
(sec)

(db3)

100

79.31 62.07 41.38 20.6897

0

0.06

0.04

0.02

100

79.31 62.07 41.38 20.6897

0

Figures 8(a-b): The time required for executio®MP (a-Left) and KLT (b-Right) with Measurement Matwith
AWGN for different DWTs applied as Sparsifying Basi

a) The DWT variations, except for slight changes in
execution time, that is proportional to O(KNd),show
little effect on performance of OMP as a sparsity
basis.

b)

The execution time for the KLT shows that the Run

time varies in proportion with O(MND) + O(MN

It

varies

in  much wider

range with Noisy

Measurement Matrix compared to Noiseless case.

If we consider the measurement of time taken for

322

With increasing sparsity and decreasing sparsidgin
(Gini index), we can see that the OMP and KLT are
behaving the opposite ways. The OMP has its
execution time decreased, while KLT takes more time
with increasing sparsity levels and decreasing Gini
Index values. The time taken by KLT is also almost
10 times greater than that taken by OMP. Howetver, i
is also observable that the OMP takes rather a&ifarg
time when the signal sparsity is more and no. tifac
execution, OMP is much faster in any case. The spectrum components is too small, i.e., one only.
effective variations in time for OMP are quite less
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d) The sparsification by different Daubechies waveiets

showing slighter

only,

effects on

execution time for both OMP and KLT.

The Correlation between

input

and output

The correlation is derived for both the algorithosing

the requiredhe xcorr and mscohere commands in Matlab. It itvelé

by taking the root, mean and square of the two wistp

or

Reconstruction Accuracy of the Algorithms

detection ability of the algorithm.

correlation between the two signals (here the irgnd
The correlation between the input and output,oe, thoutput spectrums) in terms of cross-correlationwben
Reconstruction Accuracy here, is used to show hawtm the two random processes. On the other hand, the
the algorithm succeeds in recovering the unknowutin mscohere finds the magnitude squared estimate ef th
spectrum. This in turn can give the idea of sp&atruinput signals x and y (here the input and outpatspms)
indicating how well the two signals correspond txte
other at each frequencies.

Tables VIII (a-b): The Correlation between Inputl@utput, or, the Reconstruction Accuracy of OMR.¢#) and KLT
(b-Right) with Measurement Matrix without Noise fifferent DWTs applied as Sparsifying Basis

obtained by the two commands. The xcorr gives the

Sparsity | Correlation | Correlation | Correlation | Correlation Sparsity] Correlation | Correlation | Correlation [Correlation

(%) (dbl) (db2) (db3) (db4) (%) (dbl) (db2) (db3) (db4)

100 0.722362 0.722336 0.722328 0.72211 100 0.853899| 0.3592918  0.302245  0.300432
79.3103| 0.70646 0.707156 0.707662 0.70740| 79.3103 0.5966033| 0.2814664 0.187051  0.1748B5
62.069 0.702475 0.702228 0.70307 O.7027| 62.069| 0.516531 | 0.2713444 0.13873R  0.1857p3
41.3793| 0.699084 0.699653 0.700259 0.69987| 41.3793 0.5699064 | 0.2843684 0.172286  0.1530p08
20.6897| 0.69924 0.700298 0.700744 0.70021 20.6891 0.4827888| 0.3356264 0.206208  0.1423P9

0 0.6981 0.7 0.69689 0.69715] 0 0.44698 0.33278 0.23189 0.15004

0.9 0.9
0.8 9— Correlati 0.8 * 90— Correla
07 | PR R B B e e on 0.7 \ tion
] ) db
0.6 —8— s:dobr%élati 0.6 = iﬁoriila
0.5 on 0.5 - tion
04 s:dobriélati 04 1 (db2)
0.3 on 0.3 +— Correla
tion
02 e s || 02 MV (db3)
0.1 on 0.1 —3— Correla
0 (db4) 0 tion
S & @ & S O S SR LI AR (o)
T & u”?’« ”9@’% Voo @t W %Q‘pq’

Fig. 9. (a-b): The Correlation between Input andpdt or, the Reconstruction Accuracy of OMP (atehd KLT (b-
Right) with Measurement Matrix without Noise fofffdient DWTs applied as Sparsifying Basis

Tables IX (a-b): The Correlation between Input &dput, or, the Reconstruction Accuracy of OMP @dtland KLT
(b-Right) with Measurement Matrix with AWGN for tifent DWTs applied as Sparsifying Basis

Sparsity | Correlation | Correlation | Correlation | Correlation Sparsity [Correlation|Correlation [Correlation|{Correlation
(%) (dbl) (db2) (db3) (db4) (%) (dbl) (db2) (db3) (db4)
100 0.706595 0.702676 0.706798 0.705193 100 0.8526277 0.3815782| 0.302953| 0.294874

79.3103 0.7065933 0.707362p 0.70792 0.7073| 79.3103 | 0.602819p0.2807598 0.187581| 0.17745]

62.069 0.702476 0.702205% 0.70230f7 O.7025{ 62.069 | 0.51738950.2729902 0.1392 0.185659
41.3793 0.6991179 0.695657[L 0.700192 O.6998| 41.3793 | 0.569304B0.2850822] 0.172994| 0.153239
20.6897 0.699235 0.7002688 0.700821 0.7002 20.6897 | 0.48321| 0.33568$80.206933| 0.141704

0 0.6981 0.7 0.6969 0.69715 0 0.44698 0.33276 0.23188 0.150(0
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0.9

08 —&— Correl 0.8 ‘ —— qurel
07 | —R— o || o7 [\ soon
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0.6 —-— éorrél 0.6 —— Correl
05 ation 05 ation
(db2) (db2)

0.4 Correl 04 - Correl
03 ation 03 4 >. . 4:. ation
(db3) (db3)

0.2 —¢— Correl 0.2 - e 5 N,  —— Correl
0.1 ation 01 ation
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Fig. 10 (a-b): The Correlation between Input andpOu or, the Reconstruction Accuracy of OMP (atLehd KLT (b-
Right) with Measurement Matrix with AWGN for diffent DWTs applied as Sparsifying Basis

We can see that for both Noiseless and Nois§.
Measurement Matrix, OMP exhibits Very slight
change in Correlation. It shows the variation iis th
parameter with increasing sparsity level in veryabm

The DWTs are having prominent effects on
performance of KLT algorithm as sparsifying basis,
hence indicating the data dependent nature of KLT.
The OMP on the other hand, exhibits very small
range and exhibits the tendency for decreasing variations in correlation values with different DWT
Correlation with increasing sparsity. The value basis applications.

remains within the proximity of 0.70 most of thmé& The Error (%) :

with OMP. Here the error represents the dissimilarities betwthe
While, very wide range of change is observed imput and output spectrums of the algorithms. tivehthat
Correlation with KLT. It shows the variation in $hi how much these algorithms fall short of giving dhé
parameter with increasing sparsity level signiftban accurate spectrum reconstruction, and, consequently
and exhibits the tendency for decreasing Correlatiadecovery. It is expressed in percentage.

with increasing sparsity, from 0.85 for the lowast It will be natural to observe the variation pattefrthis

of active spectral components present, i.e., a#he parameter be opposite to that of the Correlatidmvédsen
highest sparsity, around 0.15 for the highest rfo. ¢he input and output, or, the Reconstruction Accyra
active spectral components present.

In addition, with Noiseless and Noisy Measurement

Matrix application KLT shows a notable change in

correlation.

Tables X(a-b): The Error, or, Dissimilarities beemelnputs and Outputs of OMP (a-Left) and KLT (lmR) with
Measurement Matrix without Noise for different DWdplied as Sparsifying Basis

Sparsity Error Error Error Error Sparsity |Error (%) |Error (%) | Error |Error (%)
(%) (%) (dbl) | (%) (db2) | (%) (db3) | (%) (db4) (%) (db1) (db2) (%) (db3)| (db4)
10C 27.7637! | 27.7663 | 27.7676 | 27.782 10C 14.610: |64.07081|69.7755.| 69.9467!

79.3103 | 29.35394 29.28438 29.233f9 29.251 79.3103 | 40.3396671.85335481.29492 82.5162

62.069 29.75255  29.7772 29.69305 29.722{ 62.069 | 48.3469| 72.8659®6.12683 81.42768

41.3793 | 30.09164 30.03471 29.974p7 30.141 41.3793 | 43.0093571.56315782.7713§ 84.69921

20.6897 30.076 29.9702p  29.92563 29.974 20.6897 | 51.72112%6.437325%79.37928 85.76914
0 30.19 30 30.311 30.285 0 55.302 66.722| 76.811 84.99
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Fig. 11 (a-b): The Error, or, Dissimilarities beemelnputs and Outputs of OMP (a-Left) and KLT (lgiR) with
Measurement Matrix without Noise for different D8/applied as Sparsifying Basis

Tables Xl (a-b): The Error, or, Dissimilarities Wween Inputs and Outputs of OMP (a-Left) and KLTR{ight) with
Measurement Matrix with AWGN for different DWTSs diggl as Sparsifying Basis

Sparsity | Error (%) Error (%) Error (%) Error (%) Sparsity | Error (%) | Error (%) |Error (%) | Error (%)
(%) (dbl) (db2) (db3) (db4) (%) (dbl) (db2) (db3) (db4)
100 29.3405 29.7324 29.32011 29.480] 100 14.737233 61.84218| 69.70468 70.51261

79.3103 29.3406671 29.2637(08  29.20796 29.261 79.3103 | 39.71808871.924021 81.2419 82.25492

62.069 29.7524 29.77944 29.7693 29.744| 62.069 48.26105 72.700985  86.08 81.43412
41.3793 30.088214 30.043449  29.980719 30.01| 41.3793 | 43.06957]171.491779| 82.7006p 84.67667
20.6897 30.0765 29.97312b 29.91748 29.979 20.6897 51.679 | 66.431135 79.304785.82961
0 30.19 30 30.31 30.285 0 55.302 66.724 76.812 84.995
100 — Error 100 —&— Error
90 %) 90 %)
80 (db1) 80 1 T i—) (db1)
70 Error 70 'ﬁ —— Error
(%) J (%)
60 (db2) 60 (db2)
50 Error 50 - Error
40 (%) 40 (%)
0 - ) || 30— . db3)
20 (%) 20 ‘ (%)
10 (dba) 10 (db4)
0 0 :
& ,\q-%\’ Q;vé\ v"'?’% ﬁ?g): N R ,\%?’\’ @/_6\ p?’% '\9('0.: N

Fig. 12 (a-b): The Error or, Dissimilarities betwelaputs and Outputs of OMP (a-Left) and KLT (b-Rigwith
Measurement Matrix with AWGN for different DWTs diggl as Sparsifying Basis

For various DWTs applied as sparsifying basisatier The Probability of Missed Detection (R) and The
in the output shows, that how much the algorithmsad  Probability of False Alarm (Pg):
to recover the input spectrum exactly. The Probability of Missed Detection(Pis actually the

a)

b)

c)

Very slight change in Error is observed for OMP, ashance of missing the detection of any existingcspm
compared to the KLT. It shows the variation in Errocomponent actively present. While the ProbabilftfFalse

with increasing sparsity level lies in very smalhge Alarm (R:,) is the chance where in the sensing process the
and exhibits the tendency increasing with increasinCR will get the detection of an active spectrum porrent
sparsity, for OMP, i.e., 29.0 % to 30.2 %. even if the said component is not active.

While KLT, has a wide variation in Error also, as w In simplest form, spectrum sensing of a single nleéis a

had observed in Correlation. However, the patterbinary hypothesis testing problem. Specifically,

shows the opposite or increasing direction of Ho: y[n] =w[n],n =1, N

variations with increasing Sparsity Levels, or,
decreasing Sparsity Index (Gini Index). It varies
widely between 14.61 % to 84.995 % for different (V.17)

Sparsity levels for various scenarios with KLT. Where' X[n] represents a primary user’s Signali]vﬂn

The OMP does not tend to have much effect of DWHhoise and n represents time. The received sigmalig[
basis on error. While the KLT shows the effect O(/ector’ of |ength L; and n is the Sample index.

them on its performance in terms of the Error.
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Hi:y[n] =x[n]+w[n],n=1,...,N.
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For simplicity, let 0 and 1 denote the two hypotsedet
the random variable H denote the state of the kigmal

let the random variabl& denote the sensing decision. |

Thus, the probability of missed detection and th

probability of false alarm are defined as,

Py 2 P{H=0|H=1} (V.18)

P. 2 P{H=1|H = 0}. (V.19)
Small Ris necessary in order to provide possible hig

throughput in dynamic spectrum access networkgesn

false alarm wastes a spectrum opportunity. On thero

hand, small Ris necessary in order to limit the

interference to PUs. A detection algorithm can seek

tradeoffs between \Pand Rby varying the detection
threshold. [44]

Other performance metrics proposed in the liteeatu
include, but are not limited to, the detection prtabty of
wideband. It is defined as the probability that @N
channels are correctly detected, and the falsemala
probability of wideband, which
probability that any of the OFF channels are fglsel
detected as ON, the (empirical) probability of déte a
given number of ON channels and so forth. [44]

During the simulations, which we carried out forttbo
basic OMP and KLT, the input and output spectrurasew
matched. With help of the level of matching betwédea
two, different probabilities related to the detegti
performance of the algorithms were calculated. ifoee
the matching, the better the detection we foundr&lore
giving a higher probability of detection.

For finding out these probabilities, let us mak&raple
consideration. Suppose, we have these events be
observed during a spectrum sensing/ detection ggoce
A ={a Signal is ON} (V.20)
B= {a Signal is Detected} (v.21)

Therefore, the complementary events will be,

A° = {a Signal is OFF} (V.22)

Fig. 13. Binary Hypothesis Representation for
Probabilities of Detection, Missed Detection ants&a
Alarm

B°= {a Signal is NOT Detected}

Here,

Po = P(B|A)=Probability of Detection = Probability of
Signal being Detected when Signal is ON.

Pu = P(E|A) = Probability of Missed Detection =
Probability of Signal NOT being Detected when Signa
is ON.

P: = (P|A&) = Probability of False Alarm = Probability of
Signal being Detected even when the Signal is OFF.
P(B°|A°) = Probability of Signal NOT being Detected
when the Signal is OFF.

(V.23)

e

h

Therefore, we get:

Po = P(ANB) =P(A)P(B|A) (V.24)
Pe = P(A°NB) = P(A)P(B|A), and, (V.25)
Pw = P(B°NA) = P(A)P(BJA). (V.26)

r Based on these assumptions, the Probability ofeFals

is defined as thealarm, R, and Probability of Missed detectiony,Pwere

calculated for both the algorithms.

For getting the idea of behavior of a compressive
detector and probabilities, we first discuss a Sitzd
detector; and then describe how a compressed detzot
be derived using the same approach. As already)ave
assumed that there are two hypotheses concernig th
signal; that it is present in the measurements ™ mot.
The classical Neymon-Pearson (NP) detector invobies
likelihood ratio test where the sufficient statisti=<y, x>
is compared against a threshojd Here y are the
measurements, X is the signal of interest and set to
mepieve certain probability of false alarm rate<Pu for
some 0> a < 1. Itis easy to show that
Po(@) = Q@™ (@) ~VSNR), (V.27)
where Q(-) is the flipped version of standard Ganss
cumulative distribution function. [45]

This theory can be easily extended to the case wien
measurements are made using a compressed sampler in
compressive detector. Considering the binary hygsith
given above, having M measurements taken by the
compressive sampler, we can find, [45]

Po(a) = Q(Q () —V(M/N)VSNR). (V.28)

The Probability of Detection can give us the Prdigb
of Missed Detection, 2 The Probability of False Alarm,
Pra, can be set to determine the required threshoN&
for that specific Ba. Or else, It was calculated for different
SNR specifications using the following commandsriro
MATLAB.

noisepow = 1.38e-23*293*db2pow(1)*33e6;
Ntrial=1000;

snrthreshold=5;

noise =
sqrt(noisepow/2)*(randn(1000,1)+1j*randn(1000,1));
threshold=sqrt(noisepow*db2pow(snrthreshold));

We can also find the snr threshold setting thedtues
heuristically and take the help from the following
MATLAB command,

snr thresh=npwgnthresh(pfa).

It calculates the SNR threshold in decibels foedihg
a deterministic signal in white Gaussian noise. The
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S0l g3

detection uses the Neyman-Pearson decision rule dorresponding Probabilities of Detection. From thiss
determine the specified Probability of False Alaff,. easy to obtain the specific corresponding Proligibdf
This function of Matlab uses a square-law detector. Missed Detection, 2

Based upon above concepts, we have consideredusario

cases for different values ofgP for obtaining the

Table XlI: Theoretical values of Probability of @etion and Probability of Missed Detection basedpecified values
of Probability of False Alarm
Input PD PD PD PM PM PM
Sparsity | (Case | (Case | (Case | (Case | (Case | (Case
(%) 1) 2) 3) 1) 2) 3)
100 0.4718] 0.2893 0.2688 0.5282 0.7307 0.71312
79.3103| 0.8809 0.463p 0.4524 0.1191 0.5864 0.9476
62.069 | 0.9673 0.561 0.5572 0.03p7 0.4886 0.4428
5
7

41.3793] 0.9924 0.646f 0.64§ 0.0073 0.3p33 0.3515
20.6897| 0.9984 0.713p 0.714 0.0016 0.2865 0.4803
0 0.9997( 0.7679 0.774 0.0043 0.23p1 0.2pP3

OTN]+~10)

1.2
R Sl
Case 1)
0.8 T 4 (
g — el L)
06 - w = (Case 2)
04 o PD
02 Y ol (Case 3)

' N L, T
0 T T ' T T 1 (Case 1)

—%—PM
(Case 2)

Fig. 14. Variations obtained theoretically for Pabbity of Detection, B, and, Probability of Missed Detectiony,Hor
different Sparsity Levels for Compressive SensitgpAthms, defined for corresponding no. of measweets

The various values taken for calculating the afmicks Case 1:PFA=0.2, and, SNR =151
probabilities corresponding to the parameters used Case: PFA=0.2 and for thisnrthresh=npwgnthresh(0.2;

simulation of sensing algorithms OMP and KLT: and y=gfunc((gfuncinv(0.2))-(sqrt(8/202)*sqrt(2.05%;
y=PD=qfunc((gfuncinug))-(sqrt(M/N)*sqrt(SNR)) Case 3: PFA=0.1781and for thi
PD(@) ~ Q(C (o) —V(M/N)VSNR) snrthresh=npwgnthresh(0.1781) anc
a=PFA (predefined heuristica y=qfunc((gfuncinv(0.1781))-(sqrt(8/202)*sqrt(2.3639
for obtaining the B N=202, M=No. of Measurements ,:d Mabasesy finaan isieh providedith

N= Length of sign:
And, different considerations for calculating
probabilities theoretically:

Po, Pu, and, R values as per the probability theory
theconsiderations discussed above.

Table XlII: The Probability of False Alarm, Problityi of Missed Detection, and, Probability of Detiea for OMP and
KLT with Noiseless Measurement Matrix and AWGN-Measnent Matrix for various sparsity levels accogdio the
simulation results

Isrg);,tsﬁ;,g(gzl) Pr (omp) Pr kL1 Puomp) Pumen Poomp) PoxL)
100 0.01 0.03 0 0 1 1
79.31 0.08 0.26 0 0 1 1
62.07 0.1 0.46 0 0 1 1
41.38 0.14 0.49 0 0.03 1 0.97
20.6897 0.23 0.5 0 0 1 1
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1.2

—o—PF
" ,
T — ‘* L—— (OMP)
08 —8— PF(KLT)
0.6 PM

_a—a—a (o)
0.4 PM

(KLT)

Vs

a8
100 79.31 62.07 41.38 20.6897

Fig. 15. The Probability of False Alarm, Probakilif Missed Detection, and, Probability of Detentfor OMP and
KLT with Noiseless Measurement Matrix and AWGN-Me@asnent Matrix for various sparsity levels accogdia the
simulation results

a8 /N

The Probability of False Alarm, P is the one, GHz processor and the CPU time was calculated by th
considered here, as the probability for detectingQiF Matlab (version 2011b). Tables 2, 3, and 4 illustrine
channel as ON. Both the OMP and KLT show similasimulation outputs for both OMP and KLT algorithms.
behavior with the noiseless measurement matrix andOur results indicate here that for OMP, the cotiaha
AWGN-added measurement matrix. behavior can be defined as this,

In addition, it is observed that this probabilitg ir — 1, as K— O. (V.29)
minimum or near to zero at the highest sparsitglléw Where, K is the sparsity order. On the other h#id,
Gini-index, means when only a single signal compoie has different behavior, as,
active. We have observed that the algorithms detelst r — 0, as K— 0. (V.30)

one spectral components that is inactive out il t@® It is also observed here, that with increasing ob.
inactive spectral components for a specific ran®® measurements, M in OMP, the correlation, r, termls t
MHz spectrum. The same way, it is minimum when thcrease and simulation time seems to increashtislig
entire spectrum is occupied with active spectraiot very remarkably. For the KLT, with increasing. rof
components; as there are all the components int@fd,s measurements, M, the correlation, r, tends to dserand
there is not a single inactive component. Then Wwit§imulation time increases significantly.
increasing no. of active spectral components andThe algorithms we have discussed here are apmied f
decreasing Gini-index values; along with the insi®@ compressive sensing. To enable efficient spectreayel
no. of measurements, the OMP gives slight increa®®,  cognitive radio devices are being considered taised.
while KLT shows considerable increase in it. The ®M Moreover, for better Spectrum reuse, a wider ranfgeis
and KLT both have its highest value at 20.69 %pafisity to be sensed. We know that for wide band sensieg th
level in terms of Gini-index. At different Sparslt_wels of Compressive Sensing is a promising technique on the
the input, the OMP detected two frequency comp@entorizon.
that were inactive actually. While KLT detected ajale ~ The OMP has the measurement matrix of size Nxd for
out as output six to twelve frequency componentt thtaking sparse measurements and hence for data
were inactive at different sparsity levels. Thigeflected Compression_ Whilerothe other hand, the OMP and other
in the graph also depicting the PFA of the algangh greedy algorithms are simple by implementation vays

The Probability of Missed DetectionyPis on the other eyen if they required iterative methods, due topdicity

hand, the chance of detecting an ON channel as T#&. in their basic nature they are preferable candsidatavork
OMP, gives a performance, which makes this proltgbil ypon for CS applications.

zero, for both noiseless Measurement matrix and AWG  This motivated us to focus on OMP, because it @n b
added measurement matrix cases. There is no actjMetrumental for the CS as it is simpler in apima

component of the said, or, concerned spectrum,hMsic despite being a greedy iterative method. The resiove
not detected by the OMP. The KLT also performs well show that the performance of the OMP is improvirithw
the matter of detection. It has only a small r the the increasing density of the spectrum, in termspefctral
sparsity level of 41.38 % in Gini-index up to ab@®3. reconstruction or in terms of time consumed, comgbar
With all other sparsity levels, ranging from thelhest to ith that for KLT; that gives a hopeful vision ftiie CS
the lowest, except from this one, it also haseRualing pased systems as the no. of secondary users ig tmin
zero. Correspondingly, the Probability for Deteati®, iS  increase in the future definitely.
found to be very good, almost around one for both t |t is apparent that the algorithms we discussedalaoe
algorithms. the enabling tools for efficient spectrum sensing the
The Implications: CR. Improvisation of these may help development of
In this work, simulation time and correlation whiahe sophisticated spectrum sensing CR that will leagatds
acquired from around a total of 1000 trials foriegh the better spectrum resource sharing and utilizatio
signals with range of 60 MHz having 30 spectrum
components of 2 MHz bandwidth each. All simulatians
performed on a laptop with an Intel(R) core(TM)2510
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VIl. CONCLUSION AND FUTURE WORK (171

The OMP and KLT both are working quite efficiently
for recovering the spectrum for compressive spattrull8]
sensing. However, the implications of the resultiimed
are that the KLT is much data dependent and they
computational time of the algorithm is high for
eigenvector decompositions.

The OMP is also an efficient and impressive alganit

which is a fast greedy algorithm that iterativelyltds up a [20]
signal representation by selecting the atom thadnmely
improves the representation at each iteration. ONEP is 21

easily implemented and it converges quickly. Thakes

it an attractive choice to work on. To improvise tignal

recovery performance of the OMP, we would like trkv

on it in future with a varying sparsity environment [22]
The results obtained above show that the OMP can be

successfully applicable for sparsity robust envinents

for compressive spectrum sensing and detection. [23]
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