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Abstract – This paper provides a comparison between two 

widely used algorithms in the field of Compressive Sensing 
(CS), namely Orthogonal Matching Pursuit (OMP), and, 
Karhunen-Loève Transforms (KLT). As CS is one of the 
most essential techniques used by a Cognitive Radio (CR) for 
efficient usage of spectrum, it is required to be optimally 
simple, and, still, fast in working. The complexity here refers 
to the No. of computations a CR is required to make while 
using such algorithms and, this also, will in turn affect the 
effective requirement of hardware and power consumption. 
In this work, by means of simulations, we have tried to get an 
insight of working both this algorithms, OMP and KLT; and 
carried out the comparison between the two regarding their 
performances for the same experimental setup. We have 
discussed and evaluated their performances in terms of time, 
exact reconstruction of signal, percentage of error, and, 
complexity in terms of big-O, and, the probability of missed 
detection and probability of false alarm. From the simulation 
results we find that the OMP is quite promising CS tool as 
compared with the KLT in all these different aspects. 

As the CS is applicable to wideband spectrum sensing for 
CR and for varying sparsity environments, we are making 
comparison between the two that how the performance varies 
with different values of sparsity in frequency domain. We 
will carry out our further work on the bases of this work for 
modifying the OMP for CS. 

 
Keywords – CS, DWT, KLT, Measurement Matrix, 

Measurement Vector, OMP, Signal Detection, Signal 
Recovery. Sparsity, Sparsity Order. 
 

I.  INTRODUCTION  
 

A. Background and Related Work 
J. Mitola [1] has introduced Cognitive Radio (CR) as 

one of those possible devices that could be deployed as SU 
(secondary user) equipments and systems in wireless 
networks. As originally defined, a CR is a self aware and 
“intelligent” device that can adapt itself to the wireless 
environment changes. This device is  able to detect the 
changes in the wireless network to which it is connected 
and adapt its radio parameters to the new opportunities of 
spectrum usage that are detected by it. This functionality is 
called the “spectrum sensing” of a cognitive radio device.  

Cognitive radio is an advanced software-defined radio 
that automatically detects its surrounding RF stimuli and 
intelligently adapts its operating parameters to network 
infrastructure while meeting user demands. Since 

cognitive radios are considered as secondary users for 
using the licensed spectrum, a crucial requirement of 
cognitive radio networks is that they must efficiently 
exploit under-utilized spectrum (denoted as spectral 
opportunities) without causing harmful interference to the 
PUs (Primary Users). Furthermore, PUs have no 
obligation to share and change their operating parameters 
for sharing spectrum with cognitive radio networks. 
Hence, cognitive radios should be able to detect 
independently spectral opportunities without any 
assistance from PUs; this ability is called spectrum 
sensing, which we can consider as one of the most critical 
components in cognitive radio networks. [2] 

Cognitive radio systems typically involve primary users 
of the spectrum, who are incumbent licensees and 
secondary users who seek to use the spectrum 
opportunistically when the primary users are idle. The 
introduction of cognitive radios inevitably creates 
increased interference and thus can degrade the quality-of-
service of the primary system. The impact on the primary 
system, for example in terms of increased interference, 
must be kept at a minimal level. Therefore, cognitive 
radios must sense the spectrum to detect whether it is 
available or not, and must be able to detect very weak 
primary user signals. Thus, spectrum sensing is one of the 
most essential components of cognitive radio. [21] 

The problem of spectrum sensing is to decide whether a 
particular slice of the spectrum is “available” or not. That 
is, in its simplest form we want to discriminate between 
the two hypotheses, 
H0: y[n] = w[n], n = 1, N   (I.1) 
H1: y[n] = x[n] + w[n], n = 1, . . . , N.  (I.2) 

Where, x[n] represents a primary user’s signal, w[n] is 
noise and n represents time. The received signal y[n] is 
vector, of length L. Each element of the vector y[n] could 
represent, for example, the received signal at a different 
antenna. [21] 

The novel aspect of the spectrum sensing when related 
to the long-established detection theory literature is that 
the signal x[n] has a specific structure that stems from the 
use of modern modulation and coding techniques in 
contemporary wireless systems. Clearly, since such a 
structure may not be trivial to represent, this has resulted 
in substantial research efforts. At the same time, this 
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structure offers the opportunity to design very efficient 
spectrum sensing algorithms. [21] 

As CR networks are required to exploit the spectrum 
opportunities over wide frequency range for better 
spectrum utilization and obtaining optimized throughput. 
We can consider this on bases of Shannon’s formula, 
according to which, under certain conditions, the 
maximum theoretically achievable throughput or bit rate is 
directly proportional to the spectral bandwidth. Therefore, 
the wideband spectrum sensing can help us achieve larger 
aggregate throughput by exploiting more available 
spectrum opportunities over a wide frequency range. [2]  

Wideband Spectrum Sensing is the technique, which 
suggests the spectrum that we have to sense will have the 
frequency bandwidth more than the coherent bandwidth of 
the channel. The typical narrowband sensing techniques 
are limited in the way that they make use of single binary 
decision and cannot detect individual spectrum 
opportunity available in the wideband spectrum. Looking 
at the prevailing techniques nowadays, we can classify 
wideband spectrum sensing into two main classes: Nyquist 
(Rate based) spectrum sensing, and, Sub-Nyquist (Rate 
based) spectrum sensing. As the name suggests, the 
Nyquist (Rate based) spectrum sensing uses the sampling 
rate for spectral estimation at or more than the Nyquist 
rate. While the other one uses the rate of sampling below 
the Nyquist rate. [2] 

Recently, compressed sensing/compressive sampling 
(CS) has been considered as a promising technique to 
improve and implement cognitive radio (CR) systems. In 
the area of signal processing, compressed sensing is one of 
the significant technique for extracting and reconstructing 
a signal by exploring the solution to underdetermine 
significant linear systems. The theory of compressive 
sensing has evolved owing to the issues in Image 
Processing, Video representation, Spectrum Sensing, etc. 
[22] As, in wideband radio one may not be able to acquire 
a signal at the Nyquist sampling rate due to the current 
limitations in Analog-to-Digital Converter (ADC) 
technology. Compressive sensing makes it possible to 
reconstruct a sparse signal by taking fewer samples than 
Nyquist sampling. In general, signals of practical interest 
may be only nearly sparse and typically the wireless signal 
in open networks are sparse in the frequency domain since 
depending on location and at duration the percentage of 
spectrum occupancy is low due to the idle radios. [3] 

It is important that an efficient technique be explored 
that can minimize the amount of extracted data without 
any significant impact on quality of a signal. Therefore, 
under-sampling of k-space, violates the criterion of 
Nyquist, and there are increasing evidences of artifacts in 
Fourier reconstruction process. [22] 

 
Fig. 1. Conventional Sensing and Compressive Sensing [22] 

 
Fig.1 exhibits the conventional sampling of data as well 

as compressing sensing. Hence, the theory states that it is 
possible to extract a signal from minimal samples; 
however, the extraction of the signal can be 100% 
successful if the signal is being captured a minimal rate of 
information. This concept foretells that the signal is 
originally a sparse or belongs to some other form of 
transform domain. Hence, it is important to highlight 
certain definitions to understand compressive sensing as: 
1. Sparsity: Various conventional forms of signals 

(image, audio, seismic data etc.) are sited in 
compressed mode based on suitability or the 
projection. We have found that after selecting the 
basis, maximal quantities of the projection 
coefficients usually become zero or very small values, 
which we neglect usually. Hence, the theory states 
that if the signal has n-number of non-zero 
coefficient, that signal is said to be n-sparse. The 
theory also states that if maximal quantities of the 
coefficient of projection are minimal enough that we 
can neglect then only the signal can be subjected to 
compression algorithms. 

2. Incoherence: A statistical quantity evaluates the 
highest correlation between any two elements from 
two different matrices. If ᴪ is considered to be square 
matrix of size n with ψ1, ψ2, ….ψn columns and Φ is a 
non-square matrix of size m x n with φ1, φ2, …. φm as 
rows, than the mathematical interpretation of 
coherence σ is: 
µ (Φ,ᴪ) = √n max | Φk, ᴪj                        (I.3) 
 

Where the value of j lies between one to n and value 
of k lies between one and m. Hence, according to 
linearity principle, that formulates:  
1≤µ (Φ, ᴪ) ≤ √n    (I.4) 

Therefore, from the domain viewpoint of compressive 
sensing, the focus is much on the matrix incoherence 
factor adopted in sampled or in sensed signal Φx as 
well as the matrix that represents the basis where 
there is a sparse signal of interest ᴪ. 
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3. Signal Extraction: The process of extracting the 
signal in compressive sensing is equivalent to 
traditional one. The mathematical interpretation can 
be laid for the process of sensing SP considering S as 
signal, 
xP = Φx     (I.5) 

The signal x and signal process SP are usually 
represented by real number of dimension n and m 
respectively. The traditional sensing concepts says 
that m should be equivalent to n in case certain levels 
of presence of sparse signals or compressible signals. 
The minimal value of m is permissible for the sensing 
matrices that are more incoherent within the original 
domain (or even in transform domain) where the 
signal is quite sparse. Hence, traditional sensing 
concepts uses Dirac delta functions while the 
problems is resisted by using Compressive sensing 
that considers random functions to speed up the 
process of signal extraction. 

4. Signal Reconstruction: Majority of the existing 
concepts uses non-linear techniques to reconstruct the 
original signals in compressive sensing that is 
dependent on knowledge of basis of representation 
with a possibility of either compressible or sparse 
signals. Hence, the basis of representation of signal x 
is, 
ᴪxv = x     (I.6) 

In the above equation, xv is the sparse vector that 
represents coefficient of product of x and ᴪ. The 
vector for measurement SP can be now represented 
as,  
xP = γxv.     (I.7) 

The above equation shows γ as matrix of 
reconstructed signal which is equivalent to Φ. ᴪ and is 
of size m x n. [22] 

 

 
Fig. 2. Signal Extraction and Reconstruction Techniques 

in CS [22] 
 

In CS, we can recover a signal with a sparse 
representation in some basis from a small set of non-
adaptive linear measurements [4]. A sensing matrix takes 
few measurements of the signal, and the original signal 
can be reconstructed from the incomplete and 
contaminated observations accurately and sometimes 
exactly by solving a convex optimization problem [3]. The 
work of Candes, Romberg and Tao [5], [6] and Donoho 

[7] came as a major breakthrough in that they rigorously 
demonstrated, for the first time, that, under some very 
reasonable assumptions, the solution could be found using 
simple linear programming—thus rendering the solution 
practically feasible. 

Compressive sensing has three important properties. 
First, the encoding is blind to the content of a signal (or 
data) and has low computational complexity suitable for 
fast, real-time usage. Secondly, the number of 
measurements required for exact recovery is 
approximately proportional to sparsity of the signal, not its 
size. Lastly, the decoding is adaptive in the sense that the 
quality of recovered data can improve under a fixed 
number measurements—or equivalently, the required 
number of measurements that achieves the same quality 
can decrease— when a more effective sparsifying basis 
becomes available. [9] 
A.1 The Fundamental of Signal Detection 

In signal detection, the task of interest is to decide 
whether the observation y was generated under H0 or H1. 
Typically, this is accomplished by first forming a test 
statistic �(y) from the received data y, and then comparing 
�(y) with a predetermined threshold η: 

�(�) ��
��

�	
      (I.8) 

The fundamental problem of detector design is to 
choose the test statistic � (y), and to set the decision 
threshold η in order to achieve good detection 
performance. [21] 
A.2 Existing CS algorithms 

Let us have a quick review of the existing techniques 
and contributory studies discussed by prior literatures. It is 
very important for investigation that what the existing 
status in the same domain be. The adoption of 
compressive sensing is not new and it has been done 
already in the prior studies. Various researchers have used 
this technique on various problems domains of signal 
processing. Still there are comparatively less 
implementation papers on compressive sensing until date. 
To get an insight we looked into different survey papers 
made available in prominent publication like IEEE 
journals. 

Table 1 below gives a brief overview of some prominent 
survey papers published in IEEE and research done in 
Compressive Sensing. 
 
Table I: A Survey on some Compression Techniques [22] 

Authors Problem Focused Informative 
Factor Limitation 

Berger 
[23]-2010 

Algorithms for 
sparse channel 

estimation 

Discussion on 
empirical aspects 

No discussion 
of prior 
research 
attempts 

Gilbert 
[24]-2010 

Sparse recovery 
using sparse 

random matrices 

Techniques for-
each guarantee 

Performance 
effectiveness at 
techniques not 

discussed. 

Potter 
[25]-2010 

sparse 
reconstruction 
towards radar 

imaging 
 

Algorithms 
for sparse 

reconstruction 
 

Only 
theoretical 

illustrations. 
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Tropp 
[26]-2010 

Sparse 
approximations 

 

Algorithms on 
pursuit 

techniques 

No comparative 
evaluation 

being 
conducted 

Patel [27]-
2011 

Compressive 
sensing for Pattern 

recognition 

Dictionary 
methods 

Practically 
reviewed only a 

few 
implementation 

works 

Wang 
[28]-2011 

Compressive 
sensing for 

medical imaging 

Existing studies 
on compressive 

sensing 

No comparative 
evaluation 

being 
conducted 

Dias [29]-
2012 

Compressive 
sensing 

Usage of 
transform 
techniques 

Practically 
reviewed only 

4 
implementation 

work 

Mammeri 
[30]-2012 

Image 
compression 
techniques in 

sensor networks 

Discussed on 
compression 
algorithms 

No discussion 
on Research 

gap, less focus 
on CS 

Hayashi 
[31]-2013 

Compressed 
sensing in signals 

Discussion of 
algorithms e.g. 
FISTA (Fast 

Iterative 
Shrinkage-

Thresholding 
Algorithms), 

NESTA 
(Nesterov’s 
Algorithm) 

Only 
theoretical 
illustrations 

Kaur [32]-
2013 

Reconstruction 
techniques 

Simplified 
techniques of 
compressive 

sensing 

Practically 
reviewed only 

5 
implementation 

works 

Ender 
[33]-2013 

Compressed 
sensing in Radar 

imaging 

Enriched 
theoretical 

discussion on 
domains 

Only 
theoretical 
illustrations 

Pudlewski 
[34]-2013 

Challenges in 
compressive 

imaging 

Discussed 
various 

techniques 
reconstruction in 

compressive 
techniques 

No discussion 
on Research 

gap 

Qaisar 
[35]-2013 

Compressive 
Sensing and 

reconstruction 
algorithms 

Reconstruction 
techniques 

Studied 
complexity of a 

few 
implementation 

studies 

Subban 
[36]-2014 

Real time 
compressive 

tracking methods 

Sparse 
representation 

techniques 

No discussion 
on Research 
gap, Only 
theoretical 
illustrations 

Zhou 
[37]-2014 

Brief overview of 
CS 

Applications, 
literature 

Performance 

Ali [38]-
2015 

Discussion on 
different present 
techniques for 
localization of 

user through CS 

Literature 
review, 

comparison 
between CS and 

DS, graphs. 
Different 

techniques with 
issue and 

parameters 

Less 
Significant 

discussion on 
effectiveness of 

compressive 
sensing 

 

In the year 2010, Berger et.al [23] have published a 
survey paper towards compressive sensing exclusively 
focusing on the sparse channel estimation. Along with the 
theory, the author has discussed the conventional 

algorithms e.g. convex and greedy type towards sparse 
multipath channels. Gilbert and Indyk [24] are also doing 
similar type of study in same year. A unique survey study 
was found in same year by Potter et.al [25] who have 
investigated the techniques of sparse reconstruction 
towards radar imaging. Tropp and Wright [26] have also 
investigated the sparse approximation techniques. The 
authors have discussed the conventional algorithms e.g. 
convex relaxation, greedy pursuits, Bayesian, brute force 
etc., and discussed various algorithms of pursuits. Patel 
and Chellappa [27] have presented a discussion paper 
towards compressive sensing and spare representation. In 
2011, Wang [28] have presented an editorial for 
compressive sensing with an exclusive focus on medical 
image processing. In 2012, Dias and Bandewar [29] have 
published a survey paper on compressive sensing and 
discussed the existing trends in it with respect to signal 
processing. In the same year Mammeriet. al. [30] have 
presented a review paper on image compression 
techniques exclusively considering sensor networks. The 
authors have discussed various compression schemes and 
finally discussed on effective principles on compression 
for sensor networks. In 2013, Hayashi et al. [31] have 
presented a survey paper with focus on design and 
development of sensing matrix and sparsity aspects in 
compressed sensing. In the same year, Kaur et. Al [32] 
have presented a review paper on reconstruction 
techniques. However, the study did not significantly yield 
any potential findings towards compressive sensing. Ender 
[33] has performed a study, which is almost similar to 
review work done by Potter et. al. [25]. Pudlewski and 
Melodia [34] have discussed on various impediments 
towards multimedia transmission with respect to 
compressive sensing. Qaisar et. al. [35] have presented a 
discussion on pathway of compressive sensing from 
hypothetical approach to practical approach. Subban et. al. 
[36] have investigated the algorithms for sparse 
representation and compressed tracking. In 2014, Zhou 
and Zhou [37] have presented an article on compressive 
sensing that are adaptable in multimedia coding. Same 
year, Ali [38] have surveyed some of the techniques of 
compressive sensing pertaining to localization. [22] 

Standard CS algorithms have been used to reconstruct 
the original spectrum, such as basis pursuit (BP) [8] and 
others. In BP, it may take a long time to solve the linear 
program, even for signals of moderate length.         
Furthermore, when off-the-shelf optimization software is 
not available, the implementation of optimization 
algorithms may demand serious effort. We may consider 
alternate methods for reconstructing sparse signals from 
random measurements [10]. The DCT (Discrete Cosine 
Transform) and DFT (Discrete Fourier Transform) are also 
the candidates to apply for Compressive Sensing. Discrete 
Fourier Transform (DFT) is based on a fixed support set. 
The recovery with DFT as the sparsifying basis is 
suboptimal for a given signal, but it is used popularly in 
compressive sensing because it does not require any data-
dependent adaptation. [9] The Discrete Cosine Transform, 
even though suboptimal, has been extremely popular in 
video coding. The principal reasons for the heavy usage of 
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DCT are 1) it is signal independent 2) it has fast 
algorithms resulting in efficient implementation and 3) its 
performance approaches that of KLT for a Markov-1 
signal with large adjacent correlation coefficient. 

The other family, which is called iterative greedy 
algorithms, received significant attention due to their low 
complexity and simple geometric interpretation. Apart 
from the Matching Pursuit (MP)[12], they include, 
Compressive Sampling MP (CoSaMP) [13], Subspace 
Pursuit (SP) [14], Iterative Hard Thresholding (IHT) [15]. 
Out of all these and among many algorithms designed to 
recover the sparse signal, orthogonal matching pursuit 
(OMP) algorithm has received much attention for its 
competitive performance as well as practical benefits, such 
as implementation simplicity and low computational 
complexity. Over the years, the OMP algorithm has long 
been considered as a heuristic algorithm hard to be 
analyzed. Recently, however, many efforts have been 
made to discover the condition of OMP ensuring the exact 
recovery of sparse signals. In one direction, studies to 
identify the recovery condition using probabilistic 
analyses have been proposed. Tropp and Gilbert showed 
that when the measurement matrix Φ is generated at 
random and the measurement size is about K log n, OMP 
ensures the accurate recovery of every fixed K-sparse 
signal with overwhelming probability. [10] 

On the other hand, KLT, the Karhunen-Loève transform 
separates the input (= noise + signal) into   
UNCORRELATED components. The KLT is most widely 
used in applications such as multi-spectral analysis of 
satellite-gathered images through the spectral signature of 
imaged regions or, for compression purposes. The KLT 
is a unitary transform that diagonalizes the covariance of a 
discrete random sequence. As dispensation (quantization, 
coding etc) of any one coefficient in the KLT domain has 
no direct demeanor on the others, this decorrelation 
property is desirable. [11] It is also considered as an 
optimal transform among all discrete transforms based on 
a number of criteria. It is, used infrequently, however, as it 
is dependent on the statistics of the sequence i.e. when the 
statistics change so also the KLT. Because of this signal 
dependence, generally it has no fast algorithm. KLT has 
been used as a benchmark in evaluating the performance 
of other transforms. It has also provided an incentive for 
the researchers to develop signal independent (fixed) 
transforms that not only have fast algorithms, but also 
approach KLT in terms of performance.  
A. 3 Research Gap 

We can see that existing studies towards implementing 
compressive sensing on signal processing do exists with 
advantages as well as limitations too. However, a closer 
look into the studies being performed until the date was 
found with an obvious research gap. [22] 
Less Effective Survey 

We came across is the survey papers till date mentioned 
above as having less discussion of prior research 
contribution and an attempt to excavate its effectiveness 
by exploring either comparative analysis or by exploring 
research gap.  

 

Less focus on Reconstruction 
All the experimental based research papers have 

emphasized on implementing compressive sensing and 
quite less focus on its outcome with respect to 
complexities associated with reconstructed signals. 
Although reconstruction phenomenon is well defined in 
image signals, but importance of it is found in few video 
and speech signals. A closer look into the tabulated 
information will show that frequently used algorithms are 
projection-based, orthogonal matching pursuits, least 
absolute shrinkage and selection operator etc. However, 
the researchers have overlooked that although such 
techniques sometimes yield faster processing, but none of 
the above-discussed technique can be wisely adopted for 
reconstruction of a signal.  
Ambiguity in implementing Sparsity matrix 

Majority of the studies until date have considered 
sparsity as the image size, which will mean that when the 
image is divided into smaller sizes (like sub-images); the 
quantity of the samples will be required to be higher in 
size for the purpose of performing reconstruction of an 
image. However, adoption of such techniques drastically 
minimizes the probability of adopting compressive sensing 
with present definition of sparsity matrix in real-time.  
B. Motivation for this work 

There are many CS algorithms being researched and 
developed. Moreover, OMP and KLT are among the most 
promising techniques for that. There have been many 
works and papers available on different CS techniques; but 
according to the study conducted by us and as per the 
knowledge and understanding of the authors, there is not 
any other work actually that offers the comparative study 
of these two algorithms.  

In addition, the OMP needs the information on sparsity 
level beforehand and the KLT is data dependent. It would 
be interesting to check which of these two will work 
satisfactorily for different sparsity levels in frequency 
domain. Therefore, we decided to work over comparing 
the two and undertook the experimental studies required 
for that. 

In addition, the sparsity in frequency domain will be the 
main possible concern in CS research. When we estimate a 
signal through a CS system, we assume that the sparsity 
level is already given. This approach can fail when the 
sparsity assumptions given are invalid due to sparsity 
varying environment. 
With advances in CR technology implemented, the 
secondary usage of the spectrum will also increase, 
making the spectrum denser. At this time, we will need the 
algorithm that can work well with varying sparsity levels.  
We should be able to estimate the sparsity because it helps 
address a wide range of issues: 

• Modeling assumptions 
• The Number of measurements 
• The Measurement matrix 
• Recovery algorithms 

Therefore, the algorithm, that is sparsity-robust and 
provides a satisfactory signal reconstruction is one, much 
anticipated development we can look for. 
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C. Contribution of this work 
In this work, considering the research gap mentioned 

above, we are comparing the performances of OMP and 
KLT for the signal recovery for the same input spectrum 
with the same experimental scenario. We will be 
presenting that to define a better suitable algorithm for the 
CS for the CR systems of future, which will be working in 
the scenario with varying sparsity levels. 

We are proposing a sparsity-robust, greedy, OMP-based 
algorithm that may prove to be promising for CS in the 
follow-up paper of this. 
D. Organization of the paper 

 In this paper, in section II, we will discuss about the 
OMP and its basic spectrum-sensing algorithm. In section 
III, we will discuss the KLT in detail. An insight into the 
algorithmic complexity of the two will be presented in the 
section IV. In addition, the experimental set up the results 
for both will be discussed in section V. In section VI, the 
performance metrics and results of the simulation for the 
OMP and KLT will be discussed. The section VII contains 
the discussion over the new proposed sparsity robust OMP 
algorithm. The table 2 here provides us with different 
parametric notations used throughout the paper. 

 
Table II: Notations 

Parameters Description 
x Input signal in frequency domain 
y Output signal in frequency domain 

w 
Noise in measurements 
(Measurement Error) 

�� Estimated signal in Rd 

v 
N x 1 dimensional Data Vector for 
OMP 

K Sparsity 
Φ N x d Sparse Measurement Matrix 
N Measurement Vector length 
d Signal input length 
φd Columns of the measurement matrix 

xn 
Rows of the measurement matrix or 
measurement vectors for OMP 

am 
N-dimensional approximation of v 
for OMP 

rm N-dimensional residual for OMP 
Λ0 index set for OMP 
λt Index for OMP 
η Error tolerance for OMP 
s Karhunen-Loève transform of x 
Q KLT basis of x 


�� Karhunen-Loève transform of x2 
Rx Correlation matrix for KLT 

Λ 
Diagonal matrix of eigenvalues for 
KLT 

τc The component of in the set τ for 
KLT 

D Length of dictionary for KLT 
σ Noise Variance 
Vt Threshold Voltage 

 
II.  ORTHOGONAL MATCHING PURSUIT (OMP) 

 
Signal recovery can be considered as a problem dual to 

sparse approximation. Since x has only K nonzero 

components, the data vector v = Φx is a linear combination 
of m columns from Φ. In the language of sparse 
approximation, we say that v has an K-term representation 
over the dictionary Φ. Therefore, for recovering sparse 
signals, we can make use of sparse approximation 
algorithms. To identify the ideal signal s, we need to 
determine which columns of Φ participate in the data 
vector v. The idea behind the algorithm is to pick columns 
in a greedy fashion. At each iteration, we choose the 
column of Φ that is most strongly correlated with the 
remaining part of v. Then we subtract off its contribution 
to v and iterate on the residual. One hopes that, after m 
iterations, the algorithm will have identified the correct set 
of columns. 

As we have considered, x ∈Rdis a sparse vector, 
meaning its number of nonzero components Kis smaller 
than d. The support of x is the locations of the nonzero 
entries and is sometimes called its sparsity pattern. A 
common sparse estimation problem is to infer the sparsity 
pattern of x from linear measurements of the form 

v= Φx+ w,    
 (II.1) 

where Φ ∈ RNxd is a known measurement matrix, v∈RN 

represents a vector of measurements and w ∈RNis a vector 
of measurements errors (noise). [39]  

Sparsity pattern detection and related sparse estimation 
problems are classical problems in nonlinear signal 
processing and arise in a variety of applications including 
wavelet-based image processing and statistical model 
selection in linear regression. There has also been 
considerable recent interest in sparsity pattern detection in 
the context of compressed sensing, which focuses on large 
random measurement matrices A. We will analyze that 
scenario with random measurements. 

Optimal subset recovery is NP-hard and it usually 
involves searches over all the ��

��possiblesupport sets of x. 
Thus, most attention has focused on approximate methods 
for reconstruction.OMP is a simple greedy method that 
identifies the location of one nonzero component of xat a 
time. The best-knownanalysis of the performance of OMP 
for large random matrices is due to Tropp and Gilbert 
[10,40]. 

Among other results, Tropp and Gilbert show that when 
the number of measurements scales as 
N≥ (1 + δ)4Klog(d)            (II.2) 
for some δ >0, A has i.i.d. Gaussian entries, and the 
measurements are noise-free (w = 0), theOMP method will 
recover the correct sparse pattern of x with a probability 
that approaches one asd and K→ ∞. [39] 

However, numerical experiments reported in [10] 
suggest that a smaller number of measurements than the 
above equation may be sufficient for asymptotic recovery 
with OMP. Specifically, the experiments suggest that the 
constant 4 can be reduced to 2. [39] 

The theorem below proves this conjecture. Specifically, 
it is seen that the scaling in measurements 
N≥ (1 + δ)2Klog(d− K)              (II.3) 
is also sufficient for asymptotic reliable recovery with 
OMP provided both (n –k)and k → ∞. The result goes 
further by allowing uncertainty in the sparsity level k. 
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It also improves upon the Tropp–Gilbert analysis by 
accounting for the effect of the noises. While the Tropp–
Gilbert analysis requires that the measurements are noise-
free, we show that the scaling given with constant reduced 
to 2 is also sufficient when there is noise w, provided the 
signal-to-noise ratio (SNR) goes to infinity. [39] 

The MP (Matching Pursuit)is one of the basic greedy 
algorithms that find one atom at a time. In OMP, 
following steps of the algorithm we find the one atom that 
best matches the signal given the previously found atoms. 
While in the next step, it finds the next one, to best fit the 
residual. [10] 
� The algorithm stops when the error is smaller than the 

destination threshold. 
� An enhanced version of the algorithm is the 

Orthogonal MP (OMP) that re-evaluates the 
coefficients by Least Squares after each round. 

� It can reliably recover a signal with m nonzero entries 
in dimension d given O (mlnd) random linear 
measurements of that signal. Suppose that x is an 
arbitrary K-sparse signal in Rd, and let {x1, x2, 
…….,xn} be a family of N measurement vectors. 
Form an N x d matrix Φ whose rows are the 
measurement vectors, and observe that the N 
measurements of the signal can be collected in an N-
dimensional data vector v=Φx. Here Φ is the 
measurement matrix and its columns are denoted by 
φ1,…, φd. 

� Since x has only K nonzero components, the data 
vector v=Φx is a linear combination of columns m 
from Φ. In the language of sparse approximation, we 
say v is a data vector, that has an m-term 
representation over the dictionary Φ. 

� Therefore, sparse approximation algorithms can be 
used for recovering sparse signals. To identify the 
ideal signal x, we need to determine which columns of 
Φ participate in the data vector v. 

� The algorithm in a voracious or greedy fashion picks 
the columns. At each iteration, we choose the column 
of Φ that is most strongly correlated with the 
remaining part of v. Then we subtract off its 
contribution to v and iterate on the residual. One 
hopes that, after m iterations, the algorithm will have 
identified the correct set of columns. 

Algorithm 1: OMP for Compressive Sensing 
Presentation Matrix and Sensing Matrix Application 

Input:  
� x=wbs 
� RIC=δ=delta=0.36 

Output:  
� The N x d Measurement Matrix, Θ=Φ 
� The N x 1 dimensional data vector b 

Procedure: 
Initialize: 

� Wavelet Decomposition Level, K=1 
Decompose: 

� Wavelet Decomposition of x, with db1, for generating 
Sparse Representation Matrix, ᴪ 

Calculate: 
� Measure the sparsity level, sprlvl, of input using Gini 

Index method 
� If Calculate the Size of the Dictionary, N=length(C), 

C=final decomposed signal 
� Take tn=sprlvl 
� Calculate the No. of Measurements, M= (1 + 

delta)*4*tn*log (N) 
Design: 

� Design M x N Sensing Matrix Φ 
� Find N x 1 dimensional data vector b= Φ*C 

Basic OMP Algorithm 
Input:  

• The N x d measurement matrix Θ=Φ 
� The N x 1 dimensional data vector b 
� Thesparsity level K of the ideal signal 
� Maximum no. of iterations m 
� Error tolerance,η. 

Output:  
� An estimate �� in Rd for the ideal signal 
� A index set Λm containing m elements from 

{1,….,d} 
� An N-dimensional approximation am of the 

data b 
� An N-dimensional residual rm = b -am 

Procedure: 
Initialize:  

� The index set I = ∅ and the residual r = b 
� The set of non-zero elements as empty,  
� The index set Λ0=Ø, and,  
� Iteration count t=1. 

Repeat:  
� The following, ‘K’ times:  
� Identify 
� Find the index  λt that solves the easy optimization 

problem,  
λt = argmaxj=1,…,d |‹rt-1,φj›|. 

� If the maximum occurs for multiple indices, break the 
tie deterministically. 

� Update 
� Add to the index set and the matrix of chosen atoms: 

Λt←Λt-1,λt  and Φt← [Φt-1, φ λt].  
We here consider that Φ0 is an empty 

matrix. 
� A least square problem is solved to obtain a new signal 

estimate: 
xt←argmaxx||b- Φt x||2 . 

� Calculate the new approximation of the data and the 
new residual 

• at←Φt xt 
• rt←b – at . 

�  t ← t+1, and find the new index λt, if t < m . 
� The estimate    for the ideal signal has nonzero indices 

at the components listed in Λm. The value of the 
estimate    in component λj equals the jth component of 
xt . 

� Return if t≥m. 
 

III.  KARHUNEN-LOÈVE TRANSFORM (KLT) 
 

The Kahrunen-Lo`eve Transform (KLT) is a classical 
transform for a signal. KLT is optimal in the sense that it 
completely decorrelates the signal and maximally makes 
the information contained in the signal compact. Given its 
optimality in revealing the sparsity of a signal, it should be 
natural to explore the use of the KLT basis in compressive 
sensing decoding. It separates the input (= noise + signal) 
into uncorrelated components. The KLT is most widely 
used in applications such as multi-spectral analysis of 
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satellite-gathered images through the spectral signature of 
imaged regions or, for compression purposes. [9] 

Consider x ∈CN, a complex-valued, wide-sense 
stationary signal with mean zero (for simplicity). The 
correlation matrix of x can be computed numerically: Rx= 
E[xxH], where the superscripted H denotes Hermitian 
transpose (i.e., xH=X*T). Rxis real and symmetric, and the 
eigen-decomposition, Rx= QΛQH, gives columns of Q the 
eigenvectors of Rxand Λa diagonal matrix of the 
eigenvalues. Q is an orthogonal matrix, thus Q-1= QH. 

The representation s = QHxis known as Karhunen-
Lo`eve Transform (KLT) of x, and we call Q the KLT 
basis or an uncorrelated representation s, whose 
correlation matrix has zero cross-correlation terms. In 
other words, s fully describes x without any statistical 
redundancy. 

The KLT matrix Q is computed from the correlation 
matrix of input signal x, Rx= E[xxH]. Similarly, the   
correlation matrix of the compressive measurements y is 
Ry= E[yyH]. By compressive encoding y = Φx, we know: 
Ry= E[ΦxxHΦT] =ΦE[xxH] ΦT. So, Ry= ΦRxΦ

T.  
Note that Φis not a square matrix. Using the pseudo-

inverse (ΦT)y, we can have the following expression: 
Ry(Φ

T)y = ΦRx                (III.1) 
Here, we find that we have been compressively 

measuring Rx in Ry(Φ
T)y, which can be approximated from 

y = Φx that we used to encode our data x. Thus, 
compressive measurement has sufficient information to 
recover Rx from above equation.  Below is a procedure to 
estimate KLT basis Q with compressive measurements in 
four steps: 

Algorithm 2: KLT for Compressive Sensing 
Presentation Matrix and Sensing Matrix Application 

Input:  
� x=wbs 
� RIC=δ=delta=0.36 

Output:  
� The N x d Measurement Matrix, Θ=Φ 
� The N x 1 dimensional data vector x 

Procedure: 
Initialize: 

� Wavelet Decomposition Level, K=1 
Decompose: 

� Wavelet Decomposition of x, with db1, for generating 
Sparse Representation Matrix, ᴪ 

Calculate: 
� Measure the sparsity level, sprlvl, of input using Gini 

Index method 
� If Calculate the Size of the Dictionary, N=length(C), 

C=final decomposed signal 
� Take tn=sprlvl 
� Calculate the No. of Measurements, M= (1 + 

delta)*4*tn*log (N) 
Design: 

� Design M x N Sensing Matrix Φ 
� Find N x 1 dimensional data vector x= Φ*C 

KLT-based CS 
Input:  

• The N x d measurement matrix Θ=Φ 
� The N x 1 dimensional data vector x 

Output:  
� An estimate �� in Rd for the ideal signal 
� A index set Λm containing m elements from 

{1,….,d} 
� An N-dimensional approximation am of the 

data b 
Procedure: 
Compute: 

� Correlation Matrix,  
Rx= E[xxH],  

or, Define the Covariance Matrix, 
����� =  �

� ∑ � � �� !� ,  

where xi is the data vector. 
 

� Find the PSD of X, SX(ω). 
� Define the Diagonal Matrix Λ with non-increasing 

entries, 
Λ=[Q][R]x[Q]T,  

where, the matrix Λ contains the eigenvalues on the 
diagonals, 

(λ1, λ2, …, λn)=diag(=[Q][R]x[Q]T)=Sx(2πk/n). 
� Find the KLT from Λ, as the columns of [Q] are the 

basis vectors of the KLT 
� Find eigen values for the matrix 
� Sort the eigen values to remove least eigen vector for 

compression 
� Obtain Q by eigen-decomposition of  Rx = Q Λ QH 
� Reconstruct by �� =  Q#̂, or s=Q-1x 

 

We denote the transformed version of x as, 
y=
��x.              (III.2) 
Since Qxis unitary, it follows that, 
E[||x-��||2] = E[||y- ��||2] = ∑ %[|�()*(!� ��(|2],       (III.3) 

where �� = 
����. The key point is that the components of y 
are uncorrelated. Therefore, in terms of the components 
(y1, y2,…,yN) a simple answer can be given. First, if the 
component ym is retained, then clearly its corresponding 
estimate is ��( = ym . However, if ym is not retained, then 
its corresponding estimate is ��( = 0; none of the other 
components of the vector y contain anything relevant 
about ym . The best k-dimensional approximation space is 
therefore easily found in terms of y. Denote the set of the 
k-indices corresponding to the retained components of y 
by τ . Then, the incurred distortion can be expressed as  

E[||x-��||2] = ∑ +,(∈-. .               (III.4) 
Where τc denotes the complement of in the set τ = {1, 

2,….., N}. Hence, the best k-dimensional approximation is 
given by the eigenvectors corresponding to the k-largest 
eigenvalues. 

After the sparse representation consideration for 
reconstruction we have to, signal vector x ∈ℝ, can be 
expanded in an orthonormal basis Q∈ℝd×din the form of x 
= Qs. If the coefficients s ∈ℝ, have at most 0 non-zero 
components, we are calling x a 0-sparse signal with 
respect to Q, andQ is the correlation matrix of KLT. Many 
natural signals, we can represent, the same way, as a 
sparse signal in an appropriate basis. With a linear 
measurement matrix ΦN ×d , N≪d, CS measurements of a 
0-sparse signal x are collected in the form of y = Φx = 
ΦQs. If A≜ ΦQ satisfies the Restricted Isometry Property 
(RIP), then the sparse coefficient vector s can be recovered 
accurately (with very high probability) via the following 
linear program, 
s� = arg min:� ||s;||<	 , subject to y=ΦQ#̃.            (III.5) 
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Afterwards the signal of interest can be reconstructed by, 
�� =  Q#̂. 
 

IV.  COMPARISON BETWEEN OMP AND KLT 
 

Here, both the OMP and KLT use the sensing matrices 
for compressive sensing. 

In OMP, we define the length of measurement vector by 
defining the no. of measurements in our simulation that 
determines the no. of columns or no. of iterations to take 
place. The algorithm picks the columns in a greedy 
fashion here. At each iteration, we choose the column of Φ 
that is most strongly correlated with the remaining part of 
v. Then we subtract off its contribution to v and iterate on 
the residual. One hopes that, after m iterations, the 
algorithm will have identified the correct set of columns. 
Here if a K sparse signal is there, the no. of iterations are 
defined to be equal to K. Therefore, we can define relation 
between the no. of measurements and the no. of iterations 
from the relation between the no. of measurements and 
sparsity level.  

For KLT, we are decomposing the signal by removing 
the eigenvectors that are columnsof the correlation matrix. 
The matrix is sized normally N x N representing the atoms 
of the signal in form of the eigenvectors. The bases of the 
KLT are the eigenvectors of the auto. Assuming that Rx is 
the auto of the signal X, when the KLT is calculated over 
the vector X, the Rx can be estimated by: Rx = ‹XXT›. Let 
Λ be a matrix whose columns constitute a set of 
orthonormal eigenvectors of Rx, so that QQT =I and; T Rx 
= QΛQT Where Λ is the diagonal matrix of non-null 
eigenvalues: Λ = diag (λ1, λ2,...,λk). For every vector X, 
through the matrix QT , we can obtain the sparse 
coefficients vector Θ as: Θ = QT X.      

We decompose X’s correlation matrixRx into Q-1* Λ*Q. 
Then we create the N x (N-r) diagonal matrix Λ that has 
the effect of removing the columns of Q that correspond to 
the smallest diagonal entries in D. These smallest entries 
in D should make up (1-err) % of the total value of D. 
Now, Q-1*x will transform the highly correlated signal x, 
into one with no correlation. Then ΛT*Q-1*x will throw 
away the least significant entries in Q-1*x.  This (ΛT*Q-1) 
will be our compression matrix. The corresponding 
decompression matrix will be Q (or equivalently, Q* Λ). 
So in a real system, we would predetermine T= ΛT*Q-1, 
the compression matrix, and TT=Q* Λ, the decompression 
matrix, based the assumption that our future signal has a 
known correlation matrix. We right multiply the signal x 
by T, send the signal (which has N-r samples instead of N 
samples), receive it, right multiply it by TT, and we have 
our reconstructed signal. All of this compression-
decompression can me modeled by TT*T*x, or 
equivalently Q* Λ* ΛT*Q-1 = Q* Λ`*Q-1, where Λ’ = Λ* 
ΛT. Λ` is the diagonal matrix with zeros in the diagonal 
entries corresponding to the thrown away columns of Q, 
and ones in the diagonal entries corresponding to the 
retained columns of Q. 

Here, the KLT kernel is a unitary matrix, Q, whose 
columns, vectors qk (arranged in descending order of 

eigenvalue amplitude), are used to transform each zero-
meaned vector: 
yk = VT(xk-mk).                (IV.1) 
 

V. THE EXPERIMENTAL SETUP 
 

We carried out simulations for checking the 
performances of KLT and OMP for signal recovery for   
spectrum sensing purpose. Our main aim presently is to 
provide comparison between the two basic algorithms. 
Based on the obtained results and the related works 
suggesting modifications in basic OMP algorithm, we will 
propose a new modified algorithm for OMP. 

The simulation was carried out on Matlab 2011b version 
for both the algorithms. The system was having the 
processor Intel Core i5, M460, with a 64-bit OS, and 2.53 
GHz Clock Speed.  

We shall consider, at baseband, a wideband spectrum 
range [0 MHz –60 MHz] containing 30 channels of 2 MHz 
each and encode it as c = c1, c2, … , cn; where n = 30. 
Every channel may be possibly occupied by a Primary 
User (PU) using digital modulation scheme either 16-PSK 
or 16-QAM. Therefore, the symbol rate will be 2 MHz, 
number of samples per symbol will be 16, and number of 
symbols in a frame can be chosen to be 512. Here, we 
shall consider the Nyquist sampling frequency, fs= 128 
MHz and the sampling number, N = 8192. 

We took the readings over a span of 60 MHz having 30 
channel components having the BW of 2 MHz each. The 
simulation parameters are tabulated in Table 3. We first 
demonstrate the sub-Nyquist rate reconstruction 
performance using Fig. 5. Let number of samples per 
symbol be M = 16 and let N= Sampling No. = 8192for 
Gaussian random matrix for an AWGN channel. Fig. 5 
shows the results from OMP and KLT for different 
sparsity levels and the time required for simulation for 
each and signal recovery in terms of correlation between 
the input and output. 

 
Table III: Simulation Parameters for OMP and KLT 

Comparison 
Parameter Value 

The Wide Band Spectrum Band 
width 

60 MHz 

No. of Channels 30 

Band Width of a single channel 2 MHz 

Modulation Scheme 16-QAM 

No. of Samples per Symbol, M 16 

No. of Symbols per Frame 512 

Sampling No., N 8192 

Sampling Frequency, Fs 128 MHz 

SNR 5 dB 

Sensing Parameters 

Wavelet Transform (as Sparsifying 
basis) 

Daubechies 

Channel Type AWGN 

Sensing Algorithm  Basic OMP, KLT 
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VI.  THE PERFORMANCE METRICS AND 
RESULTS 

 
The results are depicted here in form of graphical plots 

for both OMP and KLT, for different sparsity levels. 
These are expressed in terms of the Time taken for 
simulation (sec) and the Correlation between the input and 
output of the algorithms. 

Here the time taken for the simulation by its name itself 
defines the speed of the algorithm on an average. This 
shows how quickly the algorithm succeeds in recovering 
the unknown input spectral component when implemented 
in a cognitive radio working as a secondary user and it 
indicates how fast the particular algorithm will be out of 
the two we have considered. 

The correlation between the input and output on the 
other hand, is used here to show how much the algorithm 
succeeds in recovering the unknown input spectrum.  

The correlation is derived for both the algorithms using 
the xcorr and mscohere commands in Matlab. It is derived 
by taking the root, mean and square of the two outputs 
obtained by the two commands. The xcorr gives the 
correlation between the two signals (here the input and 
output spectrums) in terms of cross-correlation between 
the two random processes. On the other hand, the 
mscohere finds the magnitude squared estimate of the 
input signals x and y (here the input and output spectrums) 
indicating how well the two signals correspond to each 
other at each frequencies. 

The sparsity level is measured here using the Gini 
Index. As the Gini index is one of the most reliable 
measures for sparsity, we have opted to use it here. 

Gini index is used to express the percentage of sparsity 
that gives its value in true sense. It is one of the most 
reliable measures for sparsity, 

GI (x) = 1−2 ∑ |�@|
||�||A	

*B!� C*)BD�/F
* G                          (V.1) 

 

Here the vector f = [f(1), f(2), ……., f(N)] is given  with 
its elements re-ordered and represented by f[k] for k = 1, 2, 
….., N, where |f[1]| ≤ |f[2]|, ….., ≤ |f[N]|, and ||f||1 is the l1 

norm of the function f. 
The Gini index possesses the values between 0 to 1. So, 

percentage representation required multiplication with 
100.For us, Sparsity K, is, 

 
Table IV: Sparsity Conversion corresponding to GINI 

Index representation 

Gini Index No. of Active Spectrum 

100 1  

79.3103 7  

62.069 12  

41.3793 18  

20.6897 24  

0 30  
 

 

Performance Analysis: 
To evaluate efficiency of the algorithm, it can be taken 

into account properties of the algorithm (complexity, 
velocity or speed, memory consumption), the amount of 
compression, and that how closely the reconstruction 
resembles the original signal. In this work, we will focus 
on the complexity of the algorithms, speed, and, a 
quantification of the difference/ similarity between the 
original signal and its reconstruction after compression. 
Moreover, the probability of missed detection PM, and, the 
probability of false alarm PF, or their average across 
channels, are among the prominent performance metrics 
used to characterize the wideband sensing performance of 
these algorithms. 
THE PARAMETERS AFFECTING THE SENSING 
PERFORMANCE: 

Before we can analyze the performances of these two 
algorithms and compare them, we must get the insight of 
the experimental parameter considerations used here for 
performing the sensing.  

As we have applied the wideband signal to the 
algorithms, for compressed sensing, it is required to 
sparsified and then sensed by measurement matrix. These 
two actions affect the sensing performance of the two 
algorithms. Therefore, we will have to be introduced to the 
basics of the two actions we perform. Let us have a quick 
look into these two: 
The Sparsifying Basis (DWT): 

For both this algorithms, we sparsify the signal before 
application to the algorithms. This is done to make it sure 
that the signal under consideration is sparse in true sense. 
We have used the Discrete Wavelet Transforms (DWTs) 
as sparsifying basis. It has its own excellent space 
frequency localization property. Application of DWT in 
1D signal corresponds to 1D filter in each dimension. The 
use of DWT as sparsifying basis enables the removal of 
blocking artifacts. 

Dilations and translations of the “Mother function," or 
“analyzing wavelet" ψ(x); define an orthogonal basis, our 
wavelet basis: 
ψ(s,l)(x) = 2-s/2ψ¡2-sx – l).                             (V.2) 

The variables s and l are integers that scale and dilate 
the mother function ψ to generate wavelets, such as a 
Daubechies wavelet family. The scale index s indicates the 
wavelet's width, and the location index l gives its position. 
Notice that the mother functions are rescaled, or “dilated" 
by powers of two, and translated by integers. What makes 
wavelet bases especially interesting is the self-similarity 
caused by the scales and dilations. Once we know about 
the mother functions, we know everything about the basis. 
[42] 

To span our data domain at different resolutions, the 
analyzing wavelet is used in a scaling equation: 
 

H(�) = ∑ (−1)BℎBD�K(2� + 0)*)FB!)�       (V.3) 
where W(x) is the scaling function for the mother function 
ψ, and hk are the wavelet coefficients. The wavelet 
coefficients must satisfy linear and quadratic constraints of 
the form 
∑ ℎB = 2*)�B!M , ∑ ℎBℎBDFN = 2ON,M*)�B!M   (V.4) 
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where δis the delta function and l is the location index. 
One of the most useful features of wavelets is the ease 
with which a scientist can choose the defining coefficients 
for a given wavelet system to be adapted for a given 
problem.  The Haar wavelet is even simpler, and it is often 
used for educational purposes. [42] 

It is helpful to think of the coefficients {h0,…..hn} as a 
filter. The filter or coefficients are placed in a 
transformation matrix, which is applied to a raw data 
vector. The coefficients are ordered using two dominant 
patterns, one that works as a smoothing filter (like a 
moving average), and one pattern that works to bring out 
the data's “detail" information. These two orderings of the 
coefficients are called a quadrature mirror filter pair in 
signal processing parlance. 

Now, let's look at how the wavelet coefficient matrix is 
applied to the data vector. The matrix is applied in a 
hierarchical algorithm, sometimes called a pyramidal 
algorithm. The wavelet coefficients are arranged so that 
odd rows contain an ordering of wavelet coefficients that 
act as the smoothing filter, and the even rows contain an 
ordering of wavelet coefficient with different signs that act 
to bring out the data's detail. The matrix is first applied to 
the original, full-length vector. Then the vector is 
smoothed and decimated by half and the matrix is applied 
again. Then the smoothed, halved vector is smoothed, and 
halved again, and the matrix applied once more. This 
process continues until a trivial number of “smooth-
smooth- smooth..." data remain. That is, each matrix 
application brings out a higher resolution of the data while 
at the same time smoothing the remaining data. The output 
of the DWT consists of the remaining “smooth (etc.)" 
components, and all of the accumulated “detail" 
components. [42] 

We have used db1-db4 of Daubechies family of wavelet 
transforms as sparsification basis for our experiments. We 
have observed the effects of using these all on the 
performances of both the OMP and KLT. 

Application of DWT in 1D signal corresponds to 1D 
filter in each dimension. The Daubechies wavelet 
transforms are defined in the same way as the Haar 
wavelet transform by computing the running averages and 
differences via scalar products with scaling signals and 
wavelets. The only difference between them consists in 
how these scaling signals and wavelets are defined. 

The wavelet function (mother wavelet) is orthogonal to 
all functions which are obtained by shifting the mother 
right or left by an integer amount and the mother wavelet 
is orthogonal to all functions which are obtained by 
dilating (stretching) the mother by a factor of 2j (2 to the 
jth power) and shifting by multiples of 2j units. The 
orthogonality property means that the inner product of the 
mother wavelet with itself is unity, and the inner products 
between the mother wavelet and the aforementioned shifts 
and dilates of the mother are zero. The collection of 
shifted and dilated wavelet functions is called a wavelet 
basis. The grid in shift-scale space on which the wavelet 
basis functions are defined is called the dyadic grid. The 
orthonormality of the Daubechies wavelets has a very 
important mathematical and engineering consequence: any 

continuous function may be uniquely projected onto the 
wavelet basis functions and expressed as a linear 
combination of the basis functions. The collection of 
coefficients which weight the wavelet basis functions 
when representing an arbitrary continuous function are 
referred to as the Wavelet Transform of the given 
function. 

For the Daubechies wavelet transforms, the scaling 
signals and wavelets have slightly longer supports, i.e., 
they produce averages and differences using just a few 
more values from the signal. This slight change, however, 
provides a tremendous improvement in the capabilities. 

The input Daubechies Wavelet as mother wavelet is 
divided into 8 non-overlapping multi-resolution sub-bands 
by the filters, namely db1, db2, db3up to db8, where db is 
acronym for Daubechies. The sub-band is processed 
further to obtain the next coarser scale of wavelet 
coefficients, until some final scale “N” is reached. When a 
signal is decomposed into 8 levels, the db6 sub-band 
signal best reflects the original signal, since according to 
the wavelet theory, the approximation signal at level n is 
the aggregation of the approximation at level n-1 plus the 
detail at level n-1. [41] 
• This wavelet type has balanced frequency responses 

but non-linear phase responses.  
• They use overlapping windows, so the high frequency 

coefficient spectrum reflects all high frequency 
changes.  

• These wavelets are useful in compression and noise 
removal of audio signal processing. 

For N ∈N, a Daubechies wavelet of class D-2N is a 
function ψ = Nψ∈ L2 (R) defined by, 
Ψ(x) := √2 ∑ (−1)BℎF*)�)BF*)�B!M R(2� − 0).                       (V.5)                     

Where h0, . . . , h2N−1 ∈R are the constant filter 
coefficients satisfying the conditions N−1. 
∑ ℎFB = �

√F = ∑ ℎFBD�*)�B!M*)�B!M .                        (V.6) 

As well as for  l = 0, 1, ….., N-1, 

∑ ℎBℎB)FN =  S1, TU V = 0
0, TU V ≠ 0YF*)�DFNB!FN .                  (V.7) 

and where ϕ = Nϕ : R → R is the (Daubechies) scaling 
function (sometimes also “scalet” or “father wavelet”), 
given by the recursion equation, 

 

R(�) = √2 ∑ ℎB(2� − 0)F*)�B!M .                 (V.8) 
And obeying,  
φ(x) = 0, for x ∈ R   \ [0, 2N-1].    (V.9) 
As well as 

_ φ(2x − k)(2x − l)dx = 0c , for k≠l                (V.10) 
There are N equations given by the orthonormality 

conditions (V.7). Together with (V.6) this gives in total N 
+ 2 equations for the 2N filter coefficients hk. Hence, for N 
= 1, they are over-determined, for N = 2 they are unique 
(if they exist), and for N > 2 they are underdetermined. 
However, once the filter coefficients are given, (V.6) 
demonstrates the existence and uniqueness of a function ϕ 
satisfying (V.8) and the normalization condition R Rϕ = 1, 
for a given sequence of h0, . . . , h2N−1. [43] 

The computational complexity of applying DWT basis 
for sparsification one time is equivalent to O(N), where N 
is the no. of time samples. 
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Restricted Isometry Property and the No. of 
measurements: 

As an alternative to coherence and to probabilistic 
analysis, a large number of algorithms within the broader 
field of CS have been studied using the restricted isometry 
property (RIP) for the matrix Φ[16]. A matrix Φ satisfies 
the RIP of order K if there exists a constant δ∈(0,1) such 
that, 
(1 − O)d|�|dF

F ≤ d|f�|dF
F ≤ (1 + O)||�||FF,              (V.11) 

holds for all x such that ||x||0≤ K [17]. In other words, Φ 
acts as an approximate isometry on the set of vectors that 
are K -sparse. Much is known about finding the matrices 
satisfying the RIP. For example, if we draw a random N x 
d matrix Φ whose entries ϕij are independent and 
identically distributed sub-Gaussian random variables, 
then provided that  
N = O(Klog(d/K)/OF)                (V.12) 
with high probability,Φ will satisfy the RIP of order K 
[17]. When it is satisfied, the RIP for a matrix provides a 
sufficient condition to guarantee successful sparse 
recovery using a wide variety of algorithms [16]. 

The No. of measurements is decided based on the 
criteria of noise present in the measurement matrix. If the 
noise is absent, i.e., the measurements are error-free, the 
no. of measurements can be considered to be  
N≥(1+δ)4Klog(d).                (V.13) 

While we expect the noise to be present, the No. of 
measurements can be, 
N ≥ (1 + δ)2Klog(d − K).               (V.14) 
The RIC (the Restricted Isometry Constant), δ here, was 
taken to be 0.36.  
THE METRICS FOR EVALUATING THE SENSING 
PERFORMANCE OF THE OMP AND KLT: 

Here we have focused on the computational complexity 
of the algorithms, speed, and, a quantification of the 
difference/ similarity between the original signal and its 
reconstruction after the application of compressive 
sensing. Also, the probability of missed detection, PM, and, 
the probability of false alarm, PF; or, their average across 
channels, are some of the prominent performance metrics 
used to characterize the wideband sensing performance of 
these algorithms. 

We will now have a brief analysis of these performance 
metrics for the algorithms under consideration. 
Computational Complexity: 

Normally the computational complexity is equivalent to 
the no. of steps an algorithm takes to solve the problem as 
a function of the input size. 
However, we can classify the complexity as Time 
Complexity and Space Complexity. 
Time complexity – The number of steps required by an 
algorithm varies with the size of the problem it is solving 
in the way. Time complexity is normally expressed as an 
order of magnitude, e.g. O(N^2) means that if the size of 
the problem (N) doubles then the algorithm will take four 
times as many steps to complete.  
Space complexity – The amount of storage space required 
by an algorithm varies with the size of the problem it is 
solving in the way. Space complexity is normally 
expressed as an order of magnitude, e.g. O(N^2) means 

that if the size of the problem (N) doubles then four times 
as much working storage will be needed.  
OMP: 

At each stage, OMP computes residual correlations and 
solves a least-squares problem for the new solution 
estimate. OMP builds up the active set one element at a 
time. Hence, an efficient implementation would 
necessarily maintain a Cholesky factorization of the active 
set matrix and update it at each stage, thereby reducing the 
cost of solving the least-squares system. In total, k steps of 
OMP would take at most 4k3/3+knN +O(N) flops. Without 
any sparsity assumptions on the data, OMP takes at most n 
steps, thus, its worst-case performance is bounded by 
4n3/3+n2N +O(N) operations. 

Three main points are there: (1) that in each step of the 
algorithm, the residual vector can be written as a matrix 
times a sparse signal, (2) that this matrix satisfies the RIP, 
and (3) that consequently a sharp bound can be established 
for the vector hl of inner products. The RIP of order K+1 
(with δ< 1(3√K)) is sufficient for OMP to recover exactly 
any K-sparse signal in exactly K iterations. [17] 

However, for restricted classes of K-sparse signals 
(those with sufficiently strong decay in the nonzero 
coefficients), a relaxed bound on the isometry constant can 
be used. If we wish to use the RIP of order K+1 as a 
sufficient condition for exact recovery of all K-sparse 
signals via OMP (as we have), then little improvement is 
possible in relaxing the isometry constant δ above 
1/(3√K). In particular, there exists a matrix satisfying the 
RIP of order K+1 with δ≤1/√K for which there exists a K-
sparse signal that x ∈RN cannot be recovered exactly via 
K iterations of OMP. [17] 

As we know, the no. of measurements is N = 
O(Klog(d/K)/OF) based on RIP condition to recover the K-
sparse signal, we see that finding a matrix satisfying the 
RIP of order K+1 with an isometry constant δ< 1/(3√K) 
will likely require N = O(K2log(d/K))  random 
measurements. [17] 

However, if one wishes to guarantee exact recovery of 
all K-sparse signals via OMP, then there is little room for 
further reducing N. When N ≤ K3/2, for most random N x d 
matrices Φ there will exist some K-sparse signal x ∈RN 
that cannot be recovered exactly via K iterations of OMP. 
[17] 

Tropp and Gilbert have shown that when the number of 
measurements scales as N ≥ (1 + δ)4K log(d) for some δ > 
0, A has i.i.d. Gaussian entries, and the measurements are 
noise-free (w = 0), the OMP method will recover the 
correct sparse pattern of x with a probability that 
approaches one as d and K → ∞. [39] 
KLT: 

The KLT has no structure since it depends on the 
autocorrelation matrix of the input signal. The 
implementation of KLT involves the estimation of the 
auto-correlation matrix of the data sequence, its 
diagonalization, and the construction of the basis vectors. 
Therefore, the basis vectors are depended on the signal, 
which cannot be predetermined, and must be completely 
repeated whenever any new data is added. The KLT 
requires much of computation time for the eigenvector 
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decomposition; some approximated approaches to 
overcome this problem are required to be developed. The 
coefficients in the KLT domain are sparse by nature. In the 
KLT domain, we can use a heuristic choice of K=k+1 
when the improvement in the accuracy of the 
reconstruction is achieved. [18] 

The correlation between the input and output obtained 
with KLT is much better than that achieved with the OMP. 
However, as the results show, that decreases with 
increasing density of spectrum components. 

Given a typical signal x such as the signal received from 
a wideband channel, if Q is the KLT basis of x, then Qx is 
guaranteed to be highly sparse for any x. Decoding with 
the KLT basis in general can use fewer measurements to 
achieve the  recovery accuracy, and more importantly it 
can work with any signal. However, the KLT basis is data-
dependent. This means that it needs to be updated from 
time to time if the signal is non-stationary. To reduce 
required measurements in recovering an updated KLT 
basis, we shall still exploit whatever sparsity the signal 
may possess in some domains. Fortunately, we can update 
the optimal basis relatively infrequently, that is, we only 
do this after the signal has changed substantially. We can 
make effective use of optimal KLT basis in compressive 
sensing decoding, in spite of the fact that KLT is signal 
dependent and needs to be updated from time to time. [19] 

In the KLT we are applying a measurement matrix of 
the size Nxd and then the N x N correlation matrix is 
applied which represents the N eigenvalues and 
corresponding N eigenvectors for decorrelating the signal 
components and decomposition. The basis vectors of the 
KLT are the eigenvectors of the correlation matrix. 

If we take the smallest r eigenvalues and zero them out, 
leaving err% of the sum of eigenvalues, then s, a 
realization of S  will be compressed by a factor of N/(N-r), 
and contain err% of the energy of the original signal. 

The KLT comprises three distinct processing stages: 1) 
covariance formation, 2) eigenvector calculation, and 3) 
eigenspace transform. [20] 
Numerical computation of eigenvalues: 

As we already know, for using KLT as the Compressive 
Sensing tool, we have to apply the eigenvalue 
decomposition first and eigenvector removal. We have 
used the eigenvector removal method here. For that, the 
computation of eigenvalues and eigenvector is to be 
carried out. 

Suppose that we want to compute the eigenvalues of a 
given matrix. If the matrix is small, we can compute them 
symbolically using the characteristic polynomial. 
However, this is often impossible for larger matrices, in 
which case we must use a numerical method. 

In practice, eigenvalues of large matrices are not 
computed using the characteristic polynomial. Computing 
the polynomial becomes expensive in itself, and exact 
(symbolic) roots of a high-degree polynomial can be 
difficult to compute and express: the Abel–Ruffini 
theorem implies that the roots of high-degree (5 or above) 
polynomials cannot in general be expressed simply 
using nth roots. Therefore, general algorithms to find 
eigenvectors and eigenvalues are iterative. 

Iterative numerical algorithms for approximating roots of 
polynomials exist, such as Newton's method, but in 
general, it is impractical to compute the characteristic 
polynomial and then apply these methods. One reason is 
that small round-off errors in the coefficients of the 
characteristic polynomial can lead to large errors in the 
eigenvalues and eigenvectors: the roots are an 
extremely ill conditioned function of the coefficients. 
Numerical computation of eigenvectors 

Once the eigenvalues are computed, the eigenvectors 
could be calculated by solving the equation 
(A-λiI) vi,j=0               (V.15) 
using Gaussian elimination or any other method for 
solving matrix equations. However, in practical large-scale 
eigenvalue methods, the eigenvectors are usually 
computed in other ways, as a byproduct of the eigenvalue 
computation. 

What is remarkable here is that for effectively applying 
the KLT as the tool for CS, we have to implement 
eigenvector removal and eigenvalue decomposition; and 
for doing that we have to apply iterative methods for 
computing them.  

This is the main point here, that even KLT is also 
requiring the iterative methods for computations. That 
makes it more complex as well as more time consuming. 

It has slow speed in seeking the transform from the 
correlation matrix constructed by given training data.The 
larger the scale or dimension of the correlation matrix is, 
the slower the speed of computing the eigenvectors and 
hence transform is, and then so is performing compressing 
or encoding transform. 

The time complexity of the operations is analyzed as 
follows, where no distinction is made between a 
multiplication and an add operation:  
•  Form the mean vector with O(MND) element-wise 

operations. Calculate the set of outer products and 
sum,∑ �B�B�g*)�B!M , in O (MND2). 

•  Form h�h��; subtract matrices to find Cx ; and find the 
eigenvectors of Cx. The eigenvector calculation is 
O(D3) . Convert the xk to zero-mean form in O (MND). 

•  Form the yk by O(MND2) operations.  
 Here, M is the no. of rows, N is the no. of columns and 

D is the rank of the matrix. 
The complexity, therefore, can be considered to be 

O(MND) + O(MND2). 
The lack of a general fast algorithm, because the 

covariance matrix eigenvectors must be found in every 
case, makes it pressing to find a suitable parallel 
decomposition, though some iterative algorithms also 
exist. It, therefore, suggests that the KLT also requires 
iterative methods for fast implementation. This makes it in 
one sense similar to that of the greedy algorithms.  

Since it is data dependent and requiring the iterative 
methods, for the same level of complexity of work, the 
KLT requires more computations as shown above.  

There is no unique KLT for all random processes, and it 
is, in general, not possible to find a fast (FFT-type) 
algorithm to compute the transform coefficients. 
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Fig. 5. The curves depicting comparative complexities of various algorithms with respect to no. of measurements 
 

Table V: Run-times of OMP and KLT with Measurement Matrix with and without noise 

Sparsity 
(GI) 
 (%)  

No. of  
Active 

Spectrum 
Component
s  (Out of 

30)  

No. of  
Measurements, 

N  

Time 
(OMP-

Noiseless MM) 
 (sec)  

Time   
(KLT-Noiseless 

MM) 
 (sec)  

Time   
(OMP-MM 

with AWGN) 
 (sec)  

Time   
(KLT-MM with 

AWGN) 
 (sec)  

100  1  8  0.0063 0.008115 0.028627 0.008219 

79.3103  7  55  0.006385 0.014684 0.008195 0.025053 

62.069  12  97  0.005808 0.022116 0.008413 0.041528 

41.3793  18  145  0.005885 0.026397 0.00825 0.049071 

20.6897  24  193  0.006466 0.034693 0.008402 0.076821 

0  30  242  0.006208 0.042193 0.008253 0.071453 
 
 

 
Fig. 6. The Run-times of OMP and KLT with 
Measurement Matrix with and without noise  

 
The Execution Time or The Run Time of the 
algorithms: 
The Run time for the algorithms was observed for two 
types of criteria: 
1. The wavelet basis and level of decomposition 

applied for the sparsification process, and 

2. The no. of measurements that were calculated 
based on the sparsity level. 

 

This parameter defines the speed of the algorithm for 
solving the given problem. Here, we consider the 
sensing of the spectrum and detecting the spectral holes 
as our main tasks; as the device, using these algorithms 
for spectrum sensing will be a Cognitive Radio device 
and a non-licensed secondary user (SU).  
In the dynamically changing environment of spectrum 
usage and allotments, it will be necessary to sense the 
spectrum and detect the opportunities for spectrum 
reuse, and make decisions quickly, within the least 
possible time duration. Hence, we consider the Run 
Time of the algorithm or Execution Time is one of the 
most important performance metrics. 
 
 
 
 

 
Tables VI (a-b): The time required for execution of OMP (a-Left) and KLT (b-Right) with Measurement Matrix without 

Noise for different DWTs applied as Sparsifying Basis 

Sparsity 
(%) 

Time  
(sec) (db1) 

Time  
(sec) (db2) 

Time  
(sec) (db3) 

Time  
(sec) 
(db4) 

 
Sparsity 

(%) 

Time  
 (sec) 
 (db1) 

Time  
 (sec) 
 (db2) 

Time  
(sec) (db3) 

Time   
(sec) 

 (db4) 

100 0.0069065 0.0067543 0.0061568 0.006599  100 0.006868 0.007634 0.009491 0.0084661 

79.31 0.0063794 0.0055374 0.0064882 0.006609  79.31 0.014681 0.014447 0.015368 0.0142399 

62.07 0.0060973 0.0061418 0.0071015 0.00672  62.07 0.022149 0.019695 0.020844 0.0257737 

0

0.01

0.02

0.03

0.04
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0.08

0.09

8 55 97 145 193 242
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AWGN-MM
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AWGN-MM
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41.38 0.006794 0.00638 0.0064275 0.007045  41.38 0.026274 0.028314 0.023897 0.0271049 

20.6897 0.0066212 0.0067539 0.0063435 0.006659  20.6897 0.030036 0.031567 0.039273 0.037895 

0 0.0054575 0.0064847 0.0057184 0.006596  0 0.044272 0.039862 0.037502 0.047135 

           

 
Fig. 7. (a-b): The time required for execution of OMP (a-Left) and KLT b-(Right) with Measurement Matrix without 

Noise  for different DWTs applied as Sparsifying Basis 
 

Tables VII (a-b): The time required for execution of OMP (a-Left) and KLT (b-Right) with Measurement Matrix with 
AWGN  for different DWTs applied as Sparsifying Basis 

Sparsity 
(%) 

Time  
(sec) (db1) 

Time  
(sec) (db2) 

Time  
(sec) (db3) 

Time  
(sec) 
(db4) 

 
Sparsity 

(%) 

Time  
 (sec) 
 (db1) 

Time  
 (sec) 
 (db2) 

Time  (sec) 
(db3) 

Time   
(sec) 

 (db4) 

100 0.0247835 0.0317876 0.0285245 0.029414  100 0.0089002 0.0014397 0.0125407 0.009996 

79.31 0.0088185 0.0085029 0.0077845 0.007673  79.31 0.0284509 0.0245528 0.0247724 0.022437 

62.07 0.0077475 0.0083158 0.0080823 0.009507  62.07 0.0509852 0.0351901 0.0425076 0.037429 

41.38 0.0079527 0.008278 0.0081015 0.00867  41.38 0.050227 0.0478296 0.0500714 0.048156 

20.6897 0.0067748 0.0102749 0.0073684 0.00919  20.6897 0.1178214 0.0642845 0.0645933 0.060584 

0 0.0069868 0.0084305 0.0063271 0.011266  0 0.069132 0.072829 0.07402 0.06983 

           

 
Figures 8(a-b): The time required for execution of OMP (a-Left) and KLT (b-Right) with Measurement Matrix with 

AWGN for different DWTs applied as Sparsifying Basis 
 

a) The DWT variations, except for slight changes in 
execution time, that is proportional to O(KNd),show 
little effect on performance of OMP as a sparsity 
basis. 

b) The execution time for the KLT shows that the Run 
time varies in proportion with O(MND) + O(MND2). 
It varies in much wider range with Noisy 
Measurement Matrix compared to Noiseless case. 

c) If we consider the measurement of time taken for 
execution, OMP is much faster in any case. The 
effective variations in time for OMP are quite less. 

With increasing sparsity and decreasing sparsity index 
(Gini index), we can see that the OMP and KLT are 
behaving the opposite ways. The OMP has its 
execution time decreased, while KLT takes more time 
with increasing sparsity levels and decreasing Gini 
Index values. The time taken by KLT is also almost 
10 times greater than that taken by OMP. However, it 
is also observable that the OMP takes rather a larger 
time when the signal sparsity is more and no. of active 
spectrum components is too small, i.e., one only. 
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d) The sparsification by different Daubechies wavelets is 
showing slighter only, effects on the required 
execution time for both OMP and KLT. 

The Correlation between input and output or 
Reconstruction Accuracy of the Algorithms:  

The correlation between the input and output,or, the 
Reconstruction Accuracy here, is used to show how much 
the algorithm succeeds in recovering the unknown input 
spectrum. This in turn can give the idea of spectrum 
detection ability of the algorithm. 

The correlation is derived for both the algorithms using 
the xcorr and mscohere commands in Matlab. It is derived 
by taking the root, mean and square of the two outputs 
obtained by the two commands. The xcorr gives the 
correlation between the two signals (here the input and 
output spectrums) in terms of cross-correlation between 
the two random processes. On the other hand, the 
mscohere finds the magnitude squared estimate of the 
input signals x and y (here the input and output spectrums) 
indicating how well the two signals correspond to each 
other at each frequencies. 
 

 
Tables VIII (a-b): The Correlation between Input and Output, or, the Reconstruction Accuracy of OMP (a-Left) and KLT 

(b-Right) with Measurement Matrix without Noise for different DWTs applied as Sparsifying Basis 

Sparsity 
(%) 

Correlation  
(db1) 

Correlation  
(db2) 

Correlation  
(db3) 

Correlation  
(db4) 

 Sparsity 
(%) 

Correlation  
(db1) 

Correlation 
(db2) 

Correlation 
(db3) 

Correlation  
(db4) 

100  0.722362 0.722336 0.722323 0.722171  100 0.853899 0.3592918 0.302245 0.300532 

79.3103  0.70646 0.707156 0.707662 0.707408  79.3103 0.5966033 0.2814665 0.187051 0.174835 

62.069  0.702475 0.702228 0.70307 0.70272  62.069 0.516531 0.2713444 0.138732 0.185723 

41.3793  0.699084 0.699653 0.700259 0.699871  41.3793 0.5699064 0.2843684 0.172286 0.153008 

20.6897  0.69924 0.700298 0.700744 0.700216  20.6897 0.4827888 0.3356263 0.206208 0.142309 

0  0.6981 0.7 0.69689 0.69715  0 0.44698 0.33278 0.23189 0.15004 

 

 
Fig. 9. (a-b): The Correlation between Input and Output, or, the Reconstruction Accuracy of OMP (a-Left) and KLT (b-

Right) with Measurement Matrix without Noise for different DWTs applied as Sparsifying Basis 
 

Tables IX (a-b): The Correlation between Input and Output, or, the Reconstruction Accuracy of OMP (a-Left) and KLT 
(b-Right) with Measurement Matrix with AWGN for different DWTs applied as Sparsifying Basis 

Sparsity 
(%) 

Correlation  
(db1) 

Correlation  
(db2) 

Correlation  
(db3) 

Correlation  
(db4) 

 
Sparsity 

(%) 
Correlation  

(db1) 
Correlation 

(db2) 
Correlation 

(db3) 
Correlation  

(db4) 

100 0.706595 0.702676 0.706798 0.705193  100 0.8526277 0.3815782 0.302953 0.294874 

79.3103  0.7065933 0.7073629 0.70792 0.707329  79.3103 0.6028192 0.2807598 0.187581 0.177451 

62.069  0.702476 0.7022055 0.702307 0.70256  62.069 0.5173895 0.2729902 0.1392 0.185659 

41.3793  0.6991179 0.6956571 0.700192 0.699835  41.3793 0.5693043 0.2850822 0.172994 0.153233 

20.6897  0.699235 0.7002688 0.700821 0.700201  20.6897 0.48321 0.3356888 0.206933 0.141704 

0  0.6981 0.7 0.6969 0.69715  0 0.44698 0.33276 0.23188 0.15005 
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Fig. 10 (a-b): The Correlation between Input and Output, or, the Reconstruction Accuracy of OMP (a-Left) and KLT (b-
Right) with Measurement Matrix with AWGN for different DWTs applied as Sparsifying Basis 

 
 

1. We can see that for both Noiseless and Noisy 
Measurement Matrix, OMP exhibits Very slight 
change in Correlation. It shows the variation in this 
parameter with increasing sparsity level in very small 
range and exhibits the tendency for decreasing 
Correlation with increasing sparsity. The value 
remains within the proximity of 0.70 most of the time 
with OMP. 

2. While, very wide range of change is observed in 
Correlation with KLT. It shows the variation in this 
parameter with increasing sparsity level significantly 
and exhibits the tendency for decreasing Correlation 
with increasing sparsity, from 0.85 for the lowest no. 
of active spectral components present, i.e., one, to the 
highest sparsity, around 0.15 for the highest no. of 
active spectral components present. 

3. In addition, with Noiseless and Noisy Measurement 
Matrix application KLT shows a notable change in 
correlation.  

4. The DWTs are having prominent effects on 
performance of KLT algorithm as sparsifying basis, 
hence indicating the data dependent nature of KLT. 
The OMP on the other hand, exhibits very small 
variations in correlation values with different DWT 
basis applications. 

The Error (%) : 
Here the error represents the dissimilarities between the 

input and output spectrums of the algorithms. It shows that 
how much these algorithms fall short of giving out the 
accurate spectrum reconstruction, and, consequently, 
recovery. It is expressed in percentage. 

It will be natural to observe the variation pattern of this 
parameter be opposite to that of the Correlation between 
the input and output, or, the Reconstruction Accuracy. 
 

 
Tables X(a-b): The Error, or, Dissimilarities between Inputs and Outputs of OMP (a-Left) and KLT (b-Right) with 

Measurement Matrix without Noise for different DWTs applied as Sparsifying Basis 

Sparsity 
(%)  

Error 
(%) (db1) 

Error 
(%) (db2) 

Error 
(%) (db3) 

Error 
(%) (db4) 

 Sparsity 
(%)  

Error (%) 
(db1) 

Error (%) 
(db2) 

Error 
(%) (db3) 

Error (%) 
(db4) 

100 27.76378 27.76637 27.76767 27.7829  100 14.6101 64.070817 69.77552 69.94675 
79.3103  29.35396 29.28438 29.23379 29.25925  79.3103 40.339667 71.853354 81.29492 82.5162 

62.069  29.75255 29.7772 29.69305 29.72805  62.069 48.3469 72.86556 86.12683 81.42768 

41.3793  30.09164 30.03471 29.97407 30.14286  41.3793 43.009357 71.563157 82.77138 84.69921 

20.6897  30.076 29.97025 29.92563 29.97838  20.6897 51.721125 66.437325 79.37925 85.76914 

0  30.19 30 30.311 30.285  0 55.302 66.722 76.811 84.996 
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Fig. 11 (a-b): The Error, or, Dissimilarities between Inputs and Outputs of OMP (a-Left) and KLT (b-Right) with 

Measurement Matrix without Noise   for different DWTs applied as Sparsifying Basis 
 

Tables XI (a-b): The Error, or, Dissimilarities between Inputs and Outputs of OMP (a-Left) and KLT (b-Right) with 
Measurement Matrix with AWGN for different DWTs applied as Sparsifying Basis 

Sparsity 
(%) 

Error (%) 
(db1) 

Error (%) 
(db2) 

Error (%) 
(db3) 

Error (%) 
(db4) 

 Sparsity 
(%) 

Error (%) 
(db1) 

Error (%) 
(db2) 

Error (%)  
(db3) 

Error (%) 
(db4) 

100 29.3405 29.7324 29.32017 29.4807  100 14.737233 61.84218 69.70468 70.51261 

79.3103  29.340667 29.263708 29.20796 29.26708  79.3103 39.718083 71.924021 81.2419 82.25492 

62.069  29.7524 29.77945 29.7693 29.74405  62.069 48.26105 72.700985 86.08 81.43412 

41.3793  30.088214 30.043429 29.98079 30.0165  41.3793 43.069571 71.491779 82.70065 84.67667 

20.6897  30.0765 29.973125 29.91788 29.97988  20.6897 51.679 66.431125 79.30675 85.82961 

0  30.19 30 30.31 30.285  0 55.302 66.724 76.812 84.995 
 

 
Fig. 12 (a-b): The Error or, Dissimilarities between Inputs and Outputs of OMP (a-Left) and KLT (b-Right) with 

Measurement Matrix with AWGN for different DWTs applied as Sparsifying Basis 
 

For various DWTs applied as sparsifying basis, the error 
in the output shows, that how much the algorithms do fail 
to recover the input spectrum exactly. 
a) Very slight change in Error is observed for OMP, as 

compared to the KLT. It shows the variation in Error 
with increasing sparsity level lies in very small range 
and exhibits the tendency increasing with increasing 
sparsity, for OMP, i.e., 29.0 % to 30.2 %. 

b) While KLT, has a wide variation in Error also, as we 
had observed in Correlation. However, the pattern 
shows the opposite or increasing direction of 
variations with increasing Sparsity Levels, or, 
decreasing Sparsity Index (Gini Index). It varies 
widely between 14.61 % to 84.995 % for different 
sparsity levels for various scenarios with KLT. 

c) The OMP does not tend to have much effect of DWT 
basis on error. While the KLT shows the effect of 
them on its performance in terms of the Error. 

The Probability of Missed Detection (PM) and The 
Probability of False Alarm (PF): 

The Probability of Missed Detection (PM) is actually the 
chance of missing the detection of any existing spectrum 
component actively present. While the Probability of False 
Alarm (PFA) is the chance where in the sensing process the 
CR will get the detection of an active spectrum component 
even if the said component is not active. 
In simplest form, spectrum sensing of a single channel is a 
binary hypothesis testing problem. Specifically, 

H0: y[n] = w[n], n = 1, N  
 (V.16) 

H1: y[n] = x[n] + w[n], n = 1, . . . , N.  
 (V.17) 

Where, x[n] represents a primary user’s signal, w[n] is 
noise and n represents time. The received signal y[n] is 
vector, of length L; and n is the sample index. 
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For simplicity, let 0 and 1 denote the two hypotheses, let 
the random variable H denote the state of the signal, and 
let the random variable ij denote the sensing decision. 
Thus, the probability of missed detection and the 
probability of false alarm are defined as, 
kg ≜  kl{ij = 0|i = 1}             (V.18) 
ko ≜  kl{ij = 1|i = 0}.             (V.19) 

Small PFis necessary in order to provide possible high 
throughput in dynamic spectrum access networks, since a 
false alarm wastes a spectrum opportunity. On the other 
hand, small PMis necessary in order to limit the 
interference to PUs. A detection algorithm can seek 
tradeoffs between PM and PFby varying the detection 
threshold. [44] 

Other performance metrics proposed in the literature 
include, but are not limited to, the detection probability of 
wideband. It is defined as the probability that all ON 
channels are correctly detected, and the false alarm 
probability of wideband, which is defined as the 
probability that any of the OFF channels are falsely 
detected as ON, the (empirical) probability of detecting a 
given number of ON channels and so forth. [44] 

During the simulations, which we carried out for both 
basic OMP and KLT, the input and output spectrums were 
matched. With help of the level of matching between the 
two, different probabilities related to the detecting 
performance of the algorithms were calculated. The more 
the matching, the better the detection we found. Therefore 
giving a higher probability of detection. 

For finding out these probabilities, let us make a simple 
consideration. Suppose, we have these events being 
observed during a spectrum sensing/ detection process: 
A = {a Signal is ON}             (V.20) 
B= {a Signal is Detected}             (V.21) 

Therefore, the complementary events will be, 
Ac = {a Signal is OFF}             (V.22) 

 
 

Fig. 13. Binary Hypothesis Representation for 
Probabilities of Detection, Missed Detection and False 

Alarm 
 
 
 
 
 
 
 
 
 

Bc= {a Signal is NOT Detected}              (V.23) 

 
Therefore, we get: 
PD = P(A∩B) =P(A)P(B|A),           (V.24) 
PF  = P(Ac∩B) = P(Ac)P(B|Ac), and,          (V.25) 
PM = P(Bc∩A) = P(A)P(Bc|A).           (V.26) 

Based on these assumptions, the Probability of False 
alarm, PF, and Probability of Missed detection, PM, were 
calculated for both the algorithms. 

For getting the idea of behavior of a compressive 
detector and probabilities, we first discuss a classical 
detector; and then describe how a compressed detector can 
be derived using the same approach. As already, we have 
assumed that there are two hypotheses concerning the 
signal; that it is present in the measurements or it is not. 
The classical Neymon-Pearson (NP) detector involves a 
likelihood ratio test where the sufficient statistics t ≡‹y, x› 
is compared against a threshold γ. Here y are the 
measurements, x is the signal of interest and γ is set to 
achieve certain probability of false alarm rate PF ≤ α for 
some 0 ≥ α ≤ 1. It is easy to show that 
PD(α) ≈ Q(Q−1(α) −√SNR),              (V.27) 
where Q(·) is the flipped version of standard Gaussian 
cumulative distribution function. [45] 

This theory can be easily extended to the case when the 
measurements are made using a compressed sampler in a 
compressive detector. Considering the binary hypothesis 
given above, having M measurements taken by the 
compressive sampler, we can find, [45] 
PD(α) ≈ Q(Q−1(α) −√(M/N)√SNR).             (V.28) 

The Probability of Detection can give us the Probability 
of Missed Detection, PM. The Probability of False Alarm, 
PFA, can be set to determine the required threshold of SNR 
for that specific PFA. Or else, It was calculated for different 
SNR specifications using the following commands from 
MATLAB.  

 
We can also find the snr threshold setting the PF values 

heuristically and take the help from the following 
MATLAB command,  

 
It calculates the SNR threshold in decibels for detecting 

a deterministic signal in white Gaussian noise. The 

P(A) 

P(A
c
) 

P(B|A) =PD 

P(B
c
|A) =PM 

P(B|A
c
) =PF 

P(B
c
|A

c
)  

noisepow = 1.38e-23*293*db2pow(1)*33e6; 

Ntrial=1000; 

snrthreshold=5; 

noise = 

sqrt(noisepow/2)*(randn(1000,1)+1j*randn(1000,1));  

threshold=sqrt(noisepow*db2pow(snrthreshold)); 

calculated_pfa=sum(noise>threshold)/Ntrial; 

snr thresh=npwgnthresh(pfa). 

 

Here, 
� PD = P(B|A)=Probability of Detection = Probability of 

Signal being Detected when Signal is ON. 
� PM = P(Bc|A) = Probability of Missed Detection = 

Probability of Signal NOT being Detected when Signal 
is ON. 

� PF = (P|Ac) = Probability of False Alarm = Probability of 
Signal being Detected even when the Signal is OFF. 

� P(Bc|Ac) = Probability of Signal NOT being Detected 
when the Signal is OFF. 
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detection uses the Neyman-Pearson decision rule to 
determine the specified Probability of False Alarm, PFA. 
This function of Matlab uses a square-law detector.  
Based upon above concepts, we have considered various 
cases for different values of PFA for obtaining the 

corresponding Probabilities of Detection. From this it is 
easy to obtain the specific corresponding Probability of 
Missed Detection, PM. 
 

 
Table XII: Theoretical values of Probability of Detection and Probability of Missed Detection based on specified values 

of Probability of False Alarm 
Input 

Sparsity 
(%) 

PD             
(Case 

1) 

PD         
(Case 

2) 

PD        
(Case 

3) 

PM       
(Case 

1) 

PM       
(Case 

2) 

PM       
(Case 

3) 
100 0.4718 0.2893 0.2688 0.5282 0.7107 0.7312 

79.3103 0.8809 0.4636 0.4524 0.1191 0.5364 0.5476 
62.069 0.9673 0.5614 0.5572 0.0327 0.4386 0.4428 
41.3793 0.9927 0.6467 0.6485 0.0073 0.3533 0.3515 
20.6897 0.9984 0.7135 0.7197 0.0016 0.2865 0.2803 

0 0.9997 0.7679 0.777 0.0003 0.2321 0.223 
       

Fig. 14. Variations obtained theoretically for Probability of Detection, PD, and, Probability of Missed Detection, PM, for 
different Sparsity Levels for Compressive Sensing Algorithms, defined for corresponding no. of measurements 

 
The various values taken for calculating the aforesaid 

probabilities corresponding to the parameters used for 
simulation of sensing algorithms OMP and KLT: 
y=PD=qfunc((qfuncinv(α))-(sqrt(M/N)*sqrt(SNR))) 

    PD(α) ≈ Q(Q−1(α) −√(M/N)√SNR)  
      α=PFA (predefined heuristically 

for obtaining the PD) N=202, M=No. of Measurements  (M=based on formula given here) 

 
N= Length of signal 

      And, different considerations for calculating the 
probabilities theoretically: 

 

Case 1: PFA=0.2, and , SNR = 15 dB 
Case2: PFA=0.2 and for this,snrthresh=npwgnthresh(0.2); 
and y=qfunc((qfuncinv(0.2))-(sqrt(8/202)*sqrt(2.0667))); 
Case 3: PFA=0.1781and for this, 
snrthresh=npwgnthresh(0.1781); and 
y=qfunc((qfuncinv(0.1781))-(sqrt(8/202)*sqrt(2.3689))); 
 

The results we obtained with simulation provided us with 
PD, PM, and, PF values as per the probability theory 
considerations discussed above. 
 

Table XIII: The Probability of False Alarm, Probability of Missed Detection, and, Probability of Detection for OMP and 
KLT with Noiseless Measurement Matrix and AWGN-Measurement Matrix  for various sparsity levels according to the 

simulation results 
Input Signal 
Sparsity (%)  

PF (OMP) PF (KLT)  PM(OMP) PM(KLT)  PD(OMP) PD(KLT)  

100 0.01  0.03  0  0  1  1  
79.31 0.08  0.26  0  0  1  1  
62.07 0.1  0.46  0  0  1  1  
41.38 0.14  0.49  0  0.03  1  0.97  

20.6897 0.23  0.5  0  0  1  1  
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Fig. 15. The Probability of False Alarm, Probability of Missed Detection, and, Probability of Detection for OMP and 

KLT with Noiseless Measurement Matrix and AWGN-Measurement Matrix for various sparsity levels according to the 
simulation results 

 
The Probability of False Alarm, PF, is the one, 

considered here, as the probability for detecting an OFF 
channel as ON. Both the OMP and KLT show similar 
behavior with the noiseless measurement matrix and 
AWGN-added measurement matrix.  

In addition, it is observed that this probability is 
minimum or near to zero at the highest sparsity level in 
Gini-index, means when only a single signal component is 
active. We have observed that the algorithms detect only 
one spectral components that is inactive out of total 29 
inactive spectral components for a specific range of 60 
MHz spectrum. The same way, it is minimum when the 
entire spectrum is occupied with active spectral 
components; as there are all the components in ON state, 
there is not a single inactive component. Then with 
increasing no. of active spectral components and 
decreasing Gini-index values; along with the increasing 
no. of measurements, the OMP gives slight increase in PF, 
while KLT shows considerable increase in it. The OMP 
and KLT both have its highest value at 20.69 % of sparsity 
level in terms of Gini-index. At different sparsity levels of 
the input, the OMP detected two frequency components 
that were inactive actually. While KLT detected and gave 
out as output six to twelve frequency components that 
were inactive at different sparsity levels. This is reflected 
in the graph also depicting the PFA of the algorithms. 

The Probability of Missed Detection, PM, is on the other 
hand, the chance of detecting an ON channel as OFF. The 
OMP, gives a performance, which makes this probability, 
zero, for both noiseless Measurement matrix and AWGN-
added measurement matrix cases. There is no active 
component of the said, or, concerned spectrum, which is 
not detected by the OMP. The KLT also performs well in 
the matter of detection. It has only a small PM for the 
sparsity level of 41.38 % in Gini-index up to about 0.03. 
With all other sparsity levels, ranging from the highest to 
the lowest, except from this one, it also has PM equaling 
zero. Correspondingly, the Probability for Detection PD, is 
found to be very good, almost around one for both the 
algorithms. 
The Implications: 

In this work, simulation time and correlation which are 
acquired from around a total of 1000 trials for typical 
signals with range of 60 MHz having 30 spectrum 
components of 2 MHz bandwidth each. All simulations are 
performed on a laptop with an Intel(R) core(TM) i5 2.40 

GHz processor and the CPU time was calculated by the 
Matlab (version 2011b). Tables 2, 3, and 4 illustrate the 
simulation outputs for both OMP and KLT algorithms.   

Our results indicate here that for OMP, the correlation 
behavior can be defined as this, 
r → 1, as K → 0.                (V.29) 

Where, K is the sparsity order. On the other hand, KLT 
has different behavior, as, 
r → 0, as K → 0.               (V.30) 

It is also observed here, that with increasing no. of 
measurements, M in OMP, the correlation, r, tends to 
increase and simulation time seems to increase slightly – 
not very remarkably. For the KLT, with increasing no. of 
measurements, M, the correlation, r, tends to decrease and 
simulation time increases significantly. 

The algorithms we have discussed here are applied for 
compressive sensing. To enable efficient spectrum usage, 
cognitive radio devices are being considered to be used. 
Moreover, for better spectrum reuse, a wider range of it is 
to be sensed. We know that for wide band sensing the 
compressive sensing is a promising technique on the 
horizon.  

The OMP has the measurement matrix of size Nxd for 
taking sparse measurements and hence for data 
compression. While on the other hand, the OMP and other 
greedy algorithms are simple by implementation ways and 
even if they required iterative methods, due to simplicity 
in their basic nature they are preferable candidates to work 
upon for CS applications. 

This motivated us to focus on OMP, because it can be 
instrumental for the CS as it is simpler in application 
despite being a greedy iterative method. The results above 
show that the performance of the OMP is improving with 
the increasing density of the spectrum, in terms of spectral 
reconstruction or in terms of time consumed, compared 
with that for KLT; that gives a hopeful vision for the CS 
based systems as the no. of secondary users is going to 
increase in the future definitely. 

It is apparent that the algorithms we discussed above are 
the enabling tools for efficient spectrum sensing for the 
CR. Improvisation of these may help development of a 
sophisticated spectrum sensing CR that will lead towards 
the better spectrum resource sharing and utilization. 
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VII.  CONCLUSION AND FUTURE WORK 
 

The OMP and KLT both are working quite efficiently 
for recovering the spectrum for compressive spectrum 
sensing. However, the implications of the results obtained 
are that the KLT is much data dependent and the 
computational time of the algorithm is high for 
eigenvector decompositions.  

The OMP is also an efficient and impressive algorithm, 
which is a fast greedy algorithm that iteratively builds up a 
signal representation by selecting the atom that maximally 
improves the representation at each iteration. The OMP is 
easily implemented and it converges quickly. That makes 
it an attractive choice to work on. To improvise the signal 
recovery performance of the OMP, we would like to work 
on it in future with a varying sparsity environment. 

The results obtained above show that the OMP can be 
successfully applicable for sparsity robust environments 
for compressive spectrum sensing and detection. 
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