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Abstract – Nonlinear deformation of current-carrying 

orthotropic shells in the magnetic field is studied in ax 
symmetric statement. Consideration of nonlinearity is 
studied for its effect when research of influence of external 
magnetic induction on intense the determining stressed state 
of current-carrying orthotropic shells. It is shown that with a 
change in the normal component of the external magnetic 
induction, there is a significant change in the stress state of 
the shell and its electromagnetic field. 
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I.  INTRODUCTION  

 
Increased interest in the problems of mechanics of 

coupled fields, primarily to electromagnetoelasticity, 
caused by the needs of today's technological advances in 
various industries and the development of innovation 
technologies. The issues of motion of a continuum with 
electromagnetic effects fill a highly important place in the 
mechanics of coupled fields. One of the main directions of 
development of modern solid mechanics is a development 
of the theory of conjugate fields and, in particular, the 
theory of the electromagnetic interaction with deformable 
medium [8, 10-18, 21, 23, 24] 

The mechanism of interaction of an elastic medium with 
the electromagnetic field is diverse and depends on the 
geometrical characteristics and physical properties of the 
body under consideration. In particular, this mechanism 
gets some specifics when considering the problems of thin 
plates and shells having anisotropic conductivity. 

In creating optimal structures in modern engineering, 
widespread use is made of thin-walled shells and plates as 
structural elements in which effects of nonlinear 
electromagnetic interaction with magnetic fields are 
significant. In studies of nonlinear magneto-elasticity 
problems of special interest is determination of the stress-
strain state of current-carrying plates and shells on 
exposure to variable electromagnetic and mechanical 
fields with regard to anisotropic electro-conductivity, 
magnetic and dielectric permittivity. 

Demand of these problems and interest in ones is 
conditioned by wide application in modern engineering as 
constructive elements of thin shells and plates, which are 
exposed to strong magnetic fields. These problems occur 
in modern technology, where such structures are used as 
protecting or bearing elements for shielding external fields 
of strong magnetic equipment. This interest is conditioned 
by the need to solve problems of electromagnetic 
compatibility with the development of modern measuring 
systems, computer devices, measurements of weak pulsed 
fields on the background of large fields, the development 

of the protection of personnel from electromagnetic 
effects, etc. 

The electromagnetoelasticity coupled problems of 
anisotropic plates and shells having anisotropic 
conductivity are of scientific interest in terms of both 
theory and applications. The matter is that in the case of 
thin anisotropic bodies having anisotropic conductivity it 
is possible to solve optimal problems of magnetoelasticity 
by the variation of all physical-mechanical material 
parameters of body. In particular, when mechanical and 
geometric parameters of the problem are constant, using 
variation of anisotropic electrodynamic parameters it is 
possible to obtain constructive elements with qualitatively 
new mechanical behavior. It should be noted, that recently 
the materials with new electromagnetic properties were 
created. These materials can be use in different areas of 
new appliances at creation of new technologies.   

Thin shells are widely used as members of advanced 
structures. Due to more stringent requirements to the 
service conditions of such structures, not only rigid but 
also flexible shells should be used [2, 6, 7, 25] Along with 
the development of the theory of flexible shells, it is also 
necessary to develop the theory of flexible anisotropic 
shells in the nonstationary magnetic fields [3, 19, 20, 24] 

Problems interaction between electro-magnetic field and 
deformed bodies are frequent in advanced technology. 

 
II.  NONLINEAR FORMULATION OF THE 

PROBLEM . BASIC EQUATIONS  
 
Flexible current-carrying conical shells of variable 

thickness, finite conductivity, excluding the effects of 
polarization and magnetization and thermal stresses are 
considered. Elastic properties of the shell are considered 
orthotropic, which main directions of elasticity coincide 
with the directions of the corresponding coordinate lines. 
Material obeys the generalized Hooke's law and has a 
finite conductivity. 

Electromagnetic properties of the material of the 
current-carrying shell are characterized by tensors of 
electrical conductivity i jσ , magnetic permeability i jµ   

and dielectric permittivity jiε ( )3,2,1, =ji . At the same 

time due to the crystallophysics for the considered class of 
conducting media with rhombic crystal structure it was 
considered that the tensors jiσ , jiµ , jiε  take a diagonal 

form [4, 15, 22] 
Let us define quantities and write equations that 

describe the electromagnetic field. In an Eulerian 
coordinate system, the electromagnetic field of the body is 
characterized by electric-field intensitye

�
, magnetic-field 
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intensityh
�

, electric-flux densityd
�

, and magnetic-flux 

densityb
�

.  
In Lagrangian coordinate system, the respective 

quantities a denotedE
�

, H
�

, D
�

 and B
�

. A vector x
�

 is 

carried from the Eulerian coordinate system to ξ
�

 in the 

Lagrangian system by the relations: 
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In this case, the equations of magneto-elasticity for 
anisotropic bodies in Lagrangian coordinate in the region 
occupied by the body (the interior of the region) can be 
written as follows: 
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where 
ст

J
�

 – a density of foreign current ,  f
�

 – a volume 

force, ∧f
�

 – a Lorentz volume force, J
�

 – a density of  

current, σ̂  – an internal stress tensor.    
System of equations must be closed magnetoelasticity 

relations linking the vectors of the electromagnetic field 
and induction, as well as Ohm's law defining the 
conduction current density in a movable medium.  

If the body is linear with respect to the anisotropic 
magnetic and electrical properties, the constitutive 
equations for the electromagnetic field characteristics and 
kinematic equations for the electrical conductivity, as well 
as expressions for the Lorentz forces, taking into account 

the external current 
ст

J
�

 into the Lagrangian variables are 

written respectively as: 

HB ji

��
µ= , ED ji
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Here jiσ , jiε , jiµ  are the tensors of electrical 

conductivity, dielectric and magnetic permittivities of 
linear current-carrying anisotropic body ( )3,2,1, =ji   

respectively.  
For homogeneous anisotropic media, they are symmetric 

second-rank tensors. 
Thus, equations (2) and (3) together with (4)-(6) are a 

closed system of nonlinear equations of magnetoelasticity 
for anisotropic current-carrying bodies with anisotropic 
electrical conductivity, magnetic and dielectric 
permittivities in the Lagrangian formulation. 

Suppose that the geometrical and mechanical 
characteristics of the body are such that to describe the 
deformation process is applicable version of the 
geometrically nonlinear theory of thin shells in the 
quadratic approximation. 

Also we assume that the relative strength of the electric 

field E
�

and magnetic field H
�

 are performed 
electromagnetic hypothesis [1, 3, 5, 15]: 
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where the −iu components of the displacement vector 

envelope points; −ii HE ,  components of the vectors of 

the electric and magnetic fields shell; −iJ eddy current 

components; −±
iH the tangential components of the 

magnetic field on the surface of the shell strength; −h  
thickness of the shell. 

These assumptions are some electrodynamic analog of 
the hypothesis of nondeformable normals and together 
with the latter hypothesis magnetoelasticity make subtle 
bodies.  

The adoption of these hypotheses allows us to reduce 
the problem of the three-dimensional deformation of the 
body to the problem of deformation of the chosen 
arbitrarily coordinate surface.   

Coordinate surface in the unstrained state we assign to 
the curvilinear orthogonal coordinate system s  and θ , 
where −s  length of the arc forming (meridian) is 
measured from a fixed point, −θ  central angle in a parallel 
circle measured from the selected plane. The coordinate 
lines consts =  and const=θ  lines are the principal 
curvatures of the surface coordinate. 

Choosing a coordinate ζ  coordinate normal to the 

surface of revolution, we refer to the shell of the spatial 
coordinate system of coordinates ζθ ,,s . Assume that the 

surface of the conical shell known magnetic induction, and 
the surface mechanical strength.   

Upon receipt of the resolution of the system in the 
normal form of Cauchy choose as basic functions 

θζθ EBMQNwu SSSS ,,,,,,, . 

By selecting these functions in the future, you can 
choose different combinations of fixing cone. We assume 
that all the components of the excited electromagnetic 
field and displacement field belonging to magneto-
elasticity problem equation does not depend on the 
coordinates θ , and also believe that the elastic 
characteristics and electromagneto-mechanical shell 
material does not vary along the parallels. 
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After some transformations [15], we obtain a complete 
system of nonlinear differential equations in the form 
magnetoelasticity Cauchy, which describes the stress-
strain state of the current-carrying orthotropic conical shell 
with an unsteady mechanical and magnetic fields: 
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Here ,sN  −θN  meridional and circumferential 

forces; −S shear; −,sQ shear force; −θMM s,  bending 

moments; −wu,  displacement and deflection; −Sθ the 

rotation angle of the normal; −ζPPS,  mechanical load 

components; θE – mechanical load components; ζB – the 

normal component of the magnetic induction; −+
ss BB , – 

known components of the magnetic induction on the 

surface of the shell; 
тс

Jθ –component of the electric 

current density from an external source; θees , – elastic 

modules in the directions θ,s – respectively; θνν ,S – 

Poisson's ratio, which characterize the tensile transverse 
compression in the direction of the coordinate axes; −µ  

permeability; −ω  the angular frequency; 
321 ,, σσσ – 

the main components of the tensor conductivity. 
Obtained coupled allowing system of nonlinear 

differential equations of order eight (8) describes the 
stress-strain state of flexible current-carrying orthotropic 
conical shells of rotation having orthotropic electrical 
conductivity, magnetic and electrical permittivity.  

Solving of magnetoelasticity boundary values problems 
associated with the essential computational difficulties. 
This is because the resolution of the system of equations 
(8) is a system of differential equations of hyperbolic-
parabolic type of eighth-order with variable coefficients. 
Components of the Lorentz force consider the speed of 
shell deformation, an external magnetic field, the size and 
intensity of the conduction current relatively to the 
external magnetic field. Accounting for nonlinearity in the 
equations of motion causes nonlinearity in the 
ponderomotive force.  

The developed methodology for the numerical solution 
of the new class of related problems of the theory of 
orthotropic magnetoelasticity conical shells of revolution 
having orthotropic conductivity, based on the consistent 
application of the finite Newmark schemes, linearization 
method and discrete orthogonalization [10, 12-15, 21] 

To make effective use of the proposed methods assume 
that the appearance of an external magnetic field does not 
appear sharp skin effects on the thickness of the shell and 
the electromagnetic process in the coordinate ζ  quickly 

enters the mode close to steady. This leads to restrictions 
on the behavior of the external magnetic field and on the 
geometric and electrical parameters of the shell 

,1
2

>
µσ

τ
h

                     (9)      

where −τ  the characteristic time of the magnetic field. 
In case of failure to do so should be considered only the 
shell of the equation of motion by the magnetic pressure. 

Without going into the details of the calculations, 
limited to quadratic nonlinearity in the equations and cubic 
nonlinearity in the Lorentz forces, after the application of 
the scheme Newmark and linearization method, we obtain 
a sequence of linear differential equations on the 
corresponding time level in the form 
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Further, each of the linear sequence of boundary value 
problems in the relevant time interval is solved 
numerically using a sustainable method of discrete 
orthogonalization. 

The developed algorithm for solving a new class of 
problems magnetoelasticity current-carrying conic 
orthotropic shells of revolution having orthotropic 
conductivity, magnetic and dielectric constant allows to 
obtain solutions in a wide range of geometric parameters 
of the shell, the mechanical characteristics of the material, 
surface and contour load, type of fixing the boundary 
contours, the parameters of the electromagnetic field. The 
algorithm is constructed in such a way that, on the one 
hand, he had enough common sense to the physical 
formulation, on the other hand, has the versatility to solve 
problems for different types of shells. It also has the 
property that its structure can be used in case of selecting a 
different theory of shells. It is also allowed the use of 
different interpolation formulas for calculating the right 
side of the system of equations. 

 
III.  A NUMERICAL EXAMPLE . ANALYSIS OF 

ELECTROMAGNETIC EFFECTS 
 
As an example, we consider the nonlinear behavior of 

the current-carrying orthotropic conical shell of variable 
thickness mssh N )/5.01(105 4 −⋅= − .  

We believe that the shell of beryllium is under the 
influence of mechanical force ,/sin105 23 mNtP ωζ ⋅=  

third party electric current ,/sin105 25 mAtJ mc ωθ ⋅−=  and 

external magnetic field TBS 1.00 = , and also that the 

envelope has a finite conductivity 
orthotropic ),,( 321 σσσσ . 

We assume that by the electric current in the disturbed 
state is evenly distributed on the shell, the external current 
density does not depend on the coordinates. In this case, 
the combined effect on the shell loading, the 
ponderomotive force consisting of Lorentz forces and 
mechanical. We investigate the behavior of orthotropic 
shell, depending on changes in the external normal 
component of the magnetic induction0ζB .  
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The problem for orthotropic cone of beryllium variable 
thickness )/5.01(105 4

Nssh −⋅= − m designed under the 

influence of the normal component of the magnetic 
induction 0ζB  is amended as follows (8 

options):
)0.7,0.6,0.5,0.4,0.3,0.2,0.1,3.0(0 −−−−−−−−=ζB . 

In this case, the boundary conditions can be written as   
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The parameters of the shell and the material are: 

00 =s , ,5,0 msN = )/5.01(105 4
Nssh −⋅= − m, 

mrsrr 5.0;cos 00 =+= ϕ , 1sec16.314 −=ω  
,/2300 3mkg=ρ TBB ss 5.0== −+ . 30/πϕ = ,

TBS 1.00 = , mH /10256.1 6−⋅=µ , 

,/sin105 25 mAtJ mc ωθ ⋅−= ( ) 18
1 10279.0 −×Ω⋅= mσ , 

( ) 18
2 10321.0 −×Ω⋅= mσ , ( ) 18

3 10136.1 −×Ω⋅= mσ , 

03.0=Sν , 09.0=θν , 23 /sin105 mNtP ωζ ⋅= , 

,/108.28 210 mNeS ⋅= 210 /1053.33 mNe ⋅=θ  

The solution is found in the time interval 

sec100 2−÷=τ  for the integration time step is chosen to 

be sec101 3−⋅=∆ t . Maximum values obtained at time 

step sec105 3−⋅=t . Consider the case in the anisotropy of 

the electrical resistance equal to beryllium .07.4/ 13 =ηη  

Figure 1 shows the distribution of shell deflection as a 
function of changes in the external magnetic induction at 

ms 4.0=  and sec105 3−⋅=t  all change options: 

)0.7,0.6,0.5,0.4,0.3,0.2,0.1,3.0(0 −−−−−−−−=ζB .  

The maximum deflection is observed at 0.7−=OBζ . 

From calculation results show that with the increase in the 
value of magnetic induction shell deflection increases. 
Figure 2 shows the variation of the magnetic induction 
inside of the shell, depending on changes in the external 

magnetic induction at sec105 3−⋅=t  and ms 45.0=  all 

change options
0ζB .  

In the above range of changes in the external magnetic 
induction internal magnetic induction reaches its 
maximum value at 0.4−=OBζ . It is found that 

increasing the external magnetic field induction internal 
magnetic field also increases. 

 

 
 

Fig.1. Change the membrane deflection in response to 
changes external magnetic induction in sec105 3−⋅=t  и 

ms 4.0=  all change options 0ζB . 

 
  
 
 
 
 
 
 
 

 
Fig.2. Change the inner shell of the magnetic induction as 
a function of changes in the external magnetic induction at 

sec105 3−⋅=t  and ms 45.0=  all change options 0ζB . 

At figure 3 and 4 show the stress changes +
22σ  и 

−
22σ  

on the outer and inner surfaces of the shell, depending on 
changes in the external magnetic induction at 

sec105 3−⋅=t  и ms 4.0= .  

 
 

   
 
 
 
 
 
 
 

 
Fig.3. Changing the voltage+

22σ  on the outer surface of 

the shell in response to changes in the external magnetic 

induction sec105 3−⋅=t  and ms 4.0=  

all change options .0ζB  

 
A value with increasing external magnetic induction 

voltage on the outer surface of the shell varies depending 
on the change of direction of the Lorentz force and 
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mechanical load. In the above case, the voltage on the 
external surface of the shell reaches its maximum value 
when 0.4−=OBζ

. 

 
Fig.4. Changing the voltage−

22σ  the inner surface of the 

shell in response to changes in the external magnetic 

induction sec105 3−⋅=t  and ms 4.0=   

all change options .0ζB  
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Fig.5. Change the normal component of the Lorentz 

force
ζρF  depending on changes in the external magnetic 

induction at sec105 3−⋅=t  and  

ms 4.0=  for all change options 0ζB . 

 
From figure 4 that with increase of magnetic induction 

value on the outer surface of the inner shell voltage 
increases. Figure 5 shows the change in the normal 
component of the Lorentz force

ζρF , depending on the 

changes in the external magnetic induction at 

sec105 3−⋅=t  and ms 4.0=  for all change options 0ζB . 

With increasing magnetic induction value of the normal 
component of the Lorentz force increases. 

 
IV.  CONCLUSION  

 
In this article, the associated task magnetoelasticity for 

flexible orthotropic conical shell taking into account the 
orthotropic conductivity. Get connected resolution systems 
of nonlinear differential equations describing the stress-
strain state of flexible orthotropic conical shells. It was 
analyzed the influence of external magnetic induction on 

the state of stress of the orthotropic shell in geometrically 
nonlinear formulation. It was found that with increasing of 
magnetic induction the deflection of the shell also 
increases. Increasing of the external magnetic field 
induction increases the magnitude of the mechanical stress 
of the shell.  

The change of the magnitude of the internal magnetic 
field induction of the hell depending on the external 
magnetic field and the orthotropic conductivity was 
investigated.  

It was established that an increase in external magnetic 
field induction also increases induction of the internal 
magnetic field. This corresponds to a real physical 
processes occurring in the shell and in turn confirms the 
accuracy of the results. 
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