
 
 
 

Copyright © 2017 IJEIR, All right reserved 

60 

International Journal of Engineering Innovation & Research  

Volume 6, Issue 2, ISSN: 2277 – 5668 

Improved Computational Time for Circular / Linear 

Convolution using FFT by Matrix Multiplication 
 

Priyanka Bhalawi1* and Ashish Raghuwanshi2 
2Asst. Prof. IES College of Technology, Bhopal, M.P., India 

 
Date of publication (dd/mm/yyyy): 08/03/2017 

 
Abstract – Matrix multiplication is a primary computation 

for several scientific computing, graphics processing units and 

engineering applications. Matrix multiplication is also use in 

convolution operation of two discrete signals in DFT (Discrete 

Fourier Transform) and FFT (Fast Fourier Transform) 

application. In this work, we considered two different 

examples (circular convolution and linear convolution) of 

matrix multiplier architecture where speed is the main 

constraint. 

The simulation shows the accuracy of architecture with low 

computational time and limited number of gate count. The 

computational time require for byte multiplication is 10ns i.e. 

0.01μs. Thus for 7X7 matrix it is 0.07us. In 0.07us total 7 words 

are process. This will process 100 words in 1usec and 100 

MW/sec is the throughput of this matrix size.  For 64 point i.e. 

for 63X63 matrix computational time is 0.63 μs. For 128 point 

i.e. for 127X127 matrix computational time is 1.27us μs. For 

256 point i.e. for 255X255 matrix computational time is 2.55 

μs. For 512 point i.e. for 511X511 matrix computational time 

is 5.11μs.  

In this work, we considered two different examples (circular 

convolution and linear convolution) of matrix multiplier 

architecture where speed is the main constraint. 

 

Keywords – DFT, FFT, VHDL, MAC, PE. 
 

I. INTRODUCTION 
 

The computation time and accuracy of multiplication in 

convolution operation is crucial for the performance digital 

signal processing operations. Its computational complexity 

is large due to the time requires for multiplication, shifting, 

delay and addition operations. The performance of 

convolution multiplication process can be improved by the 

design of parallel architecture. The internal architecture of 

processing elements (PE) includes addresable register, a 

mutiplier unit by byte multiplication, an adder for mutilplier 

output, FIFO block to add and shift the multiplier output, 

and a controlling unit for controlling the operations within 

the specific PE. The counters use for the matrix formation 

to set the signal samples in row wise, column wise and in 

matrix wise. PEs also design using a pipeline registers, 

simple logic gates, and other miscellaneous blocks. The 

addressable data which is to be processing components of 

the transformed sequences for the multiplier and 

multiplicand matrices are send to the processing  element. 

 

II. CIRCULAR CONVOLUTION 
 

In circular convolution two signal which is to be convolve 

is represented in anticlockwise direction on a circle. N 

samples of these signals are place on the circumference of 

the two concentric outer circle. The signal which is to be 

folded is place its sample in clockwise direction on a inner 

circle.  Multiply corresponding samples on inner and outer 

circle and add them to get output sample. To shift the shifted 

signal, rotate the inner circle in clockwise direction and 

multiply corresponding samples on inner and outer circle 

and add them to get output sample. 

 
Y(m) = 2X9+11X8+8X4+15X4 = 183 

 
Y(m) = 2X3+11X9+8X8+15X4 = 229 

 
Y(m) = 2X4+11X3+8X9+15X8 = 235 

 
Y(m) = 2X8+11X4+8X3+15X9 = 219 

 

III. LINEAR CONVOLUTION 
 

In linear convolution can be performed graphically by 

reflecting and shifting one of the signal which is to be 

convolve. In this case when first signal is of length 4, and 

second signal is of length 2, the linear convolution results 

samples is of length 4 + 2 - 1 = 5. 



 
 
 

Copyright © 2017 IJEIR, All right reserved 

61 

International Journal of Engineering Innovation & Research  

Volume 6, Issue 2, ISSN: 2277 – 5668 

 
Y(m) = 18, 6+99, 8+33+72, 16+44+24+135, 88+32+45, 

64+60, 120 

i.e. Y(m) = 18, 105, 113, 219, 165, 124, 120 

 

Matrix Method for Convolution 
Due to the importance of Discrete Fourier Transform 

(DFT) in signal processing application, it is critical to have 

an efficient method to compute this algorithm. DFT 

operates on a N -point sequence of numbers, referred to as 

x(n) . The value x(n) is presented in time domain data and 

usually can be taught as a uniformly sampled version of a 

finite period of a continuous function f (x) . The DFT of 

x(n) sequence is transformed to X(k) in frequency domain 

representation employing by using Discrete Fourier 

Transform. The functions x(n) and X(k) is generally 

represented in complex signal form, given by 

∑ 𝑥(𝑛)

𝑁−1

𝑛=0

𝑒−
𝑗2𝜋𝑘𝑛

𝑁
 =𝑋(𝐾) 

where x(n) is the input time domain representation and N is 

the number of input to the DFT. The value n represents the 

discrete time-domain index and k is the normalized 

frequency domain index. The description of efficient 

computation is discussed on DFT methods since the IDFT 

and DFT consumes the same type of computational 

algorithm. From the computation of each value of k , it is 

observed that direct computation of X(k) involves N 

complex multiplications ( 4N real multiplications) and N −1 

complex additions ( 4N − 2 real additions). Eventually, to 

compute all N values of the DFT requires N2 complex 

multiplications and N2 − N complex additions. 

The multiplication of two discrete time signal in discrete 

fourier transform is equivalent to the circular convolution 

of there sequences in time domain. For x(n) and h(n) signal 

convolution is express as: 

∑ 𝑥(𝑛)ℎ((𝑚−𝑛))𝑁=𝑦(𝑚)

𝑁−1

𝑛=0

 

Here the term h(m-n)N indicates the circular convolution. 

 

The convolution in time domain of two signal x and h is 

perform by multiplying its discrete fourier transform and 

the converting it in time domain by inverse discrete fourier 

transform. The equation of DFT is the summation of 

discrete signal multiplied by twiddle factor given as: 

X(K)= ∑ 𝑥(𝑛)𝑁−1
𝑛=0 𝑒−𝑗2𝜋𝑘𝑛/𝑁 

Where, 𝑒−𝑗2𝜋𝑘𝑛/𝑁 is called as twiddle factor.  

For long convolution the FFT is faster method as compare 

to DFT. 

 
Fig. 1. Convolution by DFT-IDFT Method. 

 

  The same convolution process is done by matrix method 

as: 

 
 

The NxM matrix multiplication equation is written as: 

y(0) = h(0)x(0) + h(N-1)x(1) + h(N-2)x(2) + ------------

h(2)x(N-2) + h(1)x(N-1) 

y(1) = h(1)x(0) + h(0)x(1) + h(N-1)x(2) + ------------

h(2)x(N-2) + h(1)x(N-1) 

y(2) = h(2)x(0) + h(1)x(1) + h(0)x(2) + ------------h(4)x(N-

2) + h(3)x(N-1) 

 

y(N-2) = h(N-2)x(0) + h(N-3)x(1) + h(N-4)x(2) + ----------

--h(0)x(N-2) + h(N-1)x(N-1) 

y(N-1) = h(N-1)x(0) + h(N-2)x(1) + h(N-3)x(2) + ----------

--h(1)x(N-2) + h(0)x(N-1) 

 

Thus circular convolution is obtaining quickly using 

matrix multiplication approach.  

 

Design Technique 
The matrix multiplication process through distributed 

memory approach and shared memory approach is use in 

many related work. This work is based on the architecture 

which consists of identical processing elements (PEs). The 

number of PE requires in design is depends on the size of 

the matrices. Each PE performs the necessary multiply 

accumulate (MAC) operation. Each PE operates 

independently with connection only to the input and output 

ports. This greatly helps in reducing the interconnection 

between the PEs and as a result the hardware resource 

utilization is minimized. The distributed memory 

processing techniques are used to improve the performance 

of the matrix multiplier. The proposed design is 

implemented using the VHDL hardware description 

language. The implementation supports a range of 

parameters to facilitate the experimental evaluation of 

design choices. A simulation test bench is used to verify the 

correctness of the implementation, by checking the 

produced results. 

 



 
 
 

Copyright © 2017 IJEIR, All right reserved 

62 

International Journal of Engineering Innovation & Research  

Volume 6, Issue 2, ISSN: 2277 – 5668 

 
Fig.  Circular Convolution of x(n) ={0111, 0110, 0101, 

1101} and h(n)={0011, 1100, 1100, 0110} 

         

 
 

Fig.  shows the timing simulation of circular convolution 

operation on timing scale of 0ns to 500 ns. F or example the 

two signal x(n) = {9,3,4,8} is convolve with the signal 

h(n)={2,11,8,15} is shown in matrix method format. The 

matrix of circular convolution is arrange in row1, row2, 

row3, row4shown in timing simulation. This matrix is 

process at every four clock triggered. The result of this 

matrix will generate the output Y(n)= {183, 229, 233, 219}.  
Synthesis Report 

# Multipliers                 : 16 

 4x4-bit multiplier         : 16 

# Adders/Subtractors     : 16 

 8-bit adder                  : 12 

 9-bit adder                  : 3 

 9-bit addsub               : 1 

# Counters                    : 1 

 9-bit up counter           : 1 

# Registers                    : 66 

 Flip-Flops                  : 66 

# Multiplexers                : 3 

 4-bit 4-to-1 multiplexer : 2 

 8-bit 4-to-1 multiplexer  : 1 

 

 
Fig 6.8. Circular Convolution of x(n) ={0101, 0011, 0110, 

1011} and h(n)={0100, 1101, 1011, 1100} 

 

Fig.  shows the timing simulation of circular convolution 

operation on timing scale of 0ns to 500 ns. For example the 

two signal x(n) = {5,3,6,11} is convolve with the signal 

h(n)={4,13,11,12} is shown in matrix method format. The 

matrix of circular convolution is arrange in row1, row2, 

row3, row4shown in timing simulation. This matrix is 

process at every four clock triggered.  

 

 
Fig. 6.9. Linear Convolution of x(n) ={5,2,1,4} and 

h(n)={2,6,6,7}= {10,34,44,61,44,31,28} 

 

Fig. shows the timing simulation of linear convolution. 

The number of sample in x(n) is denoted by L and number 

of samples in h(n) are denoted by N then the number of 

convolve samples is M=N+L-1. But the number of samples 

generated in circular convolution is N=L=M. To generate 

the M number of samples in linear convolution using matrix 

method the zeros are padded in lower rows of matrix and 



 
 
 

Copyright © 2017 IJEIR, All right reserved 

63 

International Journal of Engineering Innovation & Research  

Volume 6, Issue 2, ISSN: 2277 – 5668 

the same process of circular convolution generates the 

result which is same as the result of linear convolution.  
 

 
Fig. 6.10. Linear Convolution of x(n) ={14,1,7,4} and 

h(n)={7,8,5,2} 

 

 
Fig. shows the linear convolution. For example the 

convolution of signal x(n)= {14,1,7,4} with signal 

h(n)={7,8,5,2} generates the linear convolution result of 

{98,119,127,117,69,34,8}.The zeros are padded in the last 

three rows of first column and the bytes are shifted and 

rooted in next columns of matrix. The timing simulation are 

shown on the timing scale of 300ns to 360ns scale.  

 

 
Fig. 6.11. Linear Convolution of x(n) ={9,2,4,1} and 

h(n)={3,1,3,4} 

 

 
Fig. shows the linear convolution. For example the 

convolution of signal x(n)= {9,2,4,1} with signal 

h(n)={3,1,3,4} generates the linear convolution result of 

{27,15,41,49,21,19,4}.The zeros are padded in the last 

three rows of first column and the bytes are shifted and 

rooted in next columns of matrix. The timing simulation are 

shown on the timing scale of 400ns to 460ns scale.  

 

Table 1: Analysis for matrix to matrix multiplication. 

N Point Computational 

Time (μs) 

Throughput 

(MW/s) 

8 0.008 454.545 

64 0.064 492.61 

128 0.128 497.512 

256 0.256 498.007 

512 0.512 499.001 

 

CONCLUSION 
  

In this work, we considered two different examples 

(circular convolution and linear convolution) of matrix 

multiplier architecture where speed is the main constraint. 

The architecture of matrix multiplication operate 

concurrently, and then the additions performed 

simultaneously. This parallelism can improved the 

computational time. Our designs minimize the number gate 

count require for multiplier, adder, FIFO, counter and 

control logic modules.  It improvements in latency, 

computational-time, throughput for performing matrix 

multiplication.  The simulation shows the accuracy of 

architecture with low computational time and limited 



 
 
 

Copyright © 2017 IJEIR, All right reserved 

64 

International Journal of Engineering Innovation & Research  

Volume 6, Issue 2, ISSN: 2277 – 5668 

number of gate count. The computational time require for 

byte multiplication is 10ns i.e. 0.01μs. For the process of 

linear convolution the computational time is computed to 

0.008usec. In this time the system process 7 bytes and in 

0.016us system process 7 words. In 0.016usec it process 7 

words and in 0.0022 sec it process1Mwords. Thus the 

throughput obtain in one second is 454.545MW/s. Notice 

that changes in N have a little effect on the throughput, 

which is due to the highly parallely distributed memory 

approach in proposed architecture. 

 

REFERENCES 
 
[1]  Soydan Redif, and Server Kasap "Novel Reconfigurable 

Hardware Architecture for Polynomial Matrix Multiplications" 
IEEE Transactions On Very Large Scale Integration (Vlsi) 

Systems" March 10, 2014. 

[2]  Tai-Chi Lee, Mark White, and Michael Gubody "Matrix 
Multiplication on FPGA-Based Platform" Proceedings of the 

World Congress on Engineering and Computer Science 2013 Vol 

I. 
[3]  Bahram Hamraz, Nicholas HM Caldwell, and P. John Clarkson 

"A Matrix-Calculation-Based Algorithm for Numerical Change 
Propagation Analysis" IEEE Transactions On Engineering 

Management, Vol. 60, No. 1, February 2013 pp. no. 186. 

[4]  Nan Zhang  "A Novel Parallel Scan for Multicore Processors and 
Its Application in Sparse Matrix-Vector Multiplication" IEEE 

Transactions On Parallel And Distributed Systems, Vol. 23, No. 

3, March 2012 pp. no. 397. 
[5]  Mr. Rounak R. Gupta, 2Prof. Atul S. Joshi "Matrix Manipulation 

Using High Computing Field Programmable Gate Arrays"  

International Journal of Enterprise Computing and Business 
System Vol 2 issue 2 Jully 2012. 

[6]  Syed M. Qasim, Ahmed A. Telba and Abdulhameed Y. AlMazroo 

"Syed M. Qasim, Ahmed A. Telba and Abdulhameed Y. 
AlMazroo" IJCSNS International Journal of Computer Science 

and Network Security, VOL.10 No.2, February 2010 pp no. 168. 

[7]  Syed M. Qasim, Ahmed A. Telba and Abdulhameed Y. AlMazroo 
"FPGA Design and Implementation of Matrix Multiplier 

Architectures for Image and Signal Processing Applications" 

IJCSNS International Journal of Computer Science and Network 
Security, VOL.10 No.2, February 2010 pp. no. 168. 


