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Abstract – The rotary inverted pendulum (RIP) has a fourth 

order nonlinear dynamics, and its control is typically with two 

stages, i.e., a swing-up control and a balancing control. For 

Linear-quadratic regulator (LQR) control, under large 

disturbances, the RIP stability may be lost. With Input-output 

feedback linearization (IOFL) control, the linearized portion’s 

stability is governed by the linear control scheme, and the 

closed loop for the unlinearizable portion of the original 

dynamics forms the so-called internal dynamics, which not 

necessarily has the bounded input - bounded output (BIBO) 

stability. A modified IOFL control is presented with these 

approaches: for the linearized portion, the gains associated 

with the angle and angular velocity of the inverted pendulum 

are selected based on enhancing the stability via pole 

placement; for the unlinearizable portion, the gains associated 

with the angle and angular velocity of the rotary arm are 

determined by minimizing the cost function via genetic 

algorithm. Therefore, the pole-placement genetic algorithm 

synthesized IOFL control promises an augmented stability 

region for the RIP system. The results can be generalized in 

the applications of various nonlinear systems’ control design. 
 

Keywords – Input Output Feedback Linearization, Linear 

Quadratic Regulator, Genetic Algorithm, Internal Dynamics. 

 

I. INTRODUCTION 
 

For decades, dynamics of the rotary inverted pendulum 

(RIP) has been extensively utilized as a test bed for dealing 

with nonlinear control problems. The RIP, also called the 

Furuta pendulum, was invented at Tokyo Institute of 

Technology by Katsuhisa Furuta and his colleagues. Furuta 

et al. [1] proposed the RIP physical model with a rotary arm 

driven by a DC motor and a pendulum linked to the end of 

rotating arm.  

Even though the RIP system’s contracture is simple, it is 

a good representative to various dynamic systems. For 

example, a bassinet, or known as a bed cradle is a bed 

specifically invented for young-age babies. The rocking-

chair movement activated by a RIP-like structure ensures 

that the baby’s body in the cradle moves along a curved 

trajectory. However, the stability of the rocking-chair 

movement is prone to be lost when the cradle moves to the 

far side from the central equilibrium position. Improving 

the stability of RIP system dynamics is essential to the 

bassinet design. The rocket landing is another well-known 

application of the RIP system. The motion of a flying rocket 

is a superposition of the translation of the mass center and 

the rotation of the rocket about its mass center. Essentially, 

the RIP system can be viewed as a simplified physical 

model of the early rockets, even of the current air-to-air 

missiles with adjustable fins at the rear for the aerodynamic 

force control. With the intention of designing a robust and 

stable guidance system for a rocket, a RIP system which 

fundamentally embodies similar characteristics as a rocket 

flying system is always taken to be investigated by aero-

dynamists at an early stage. A third application of the RIP 

system lies in the legged locomotion and gait rehabilitation 

for patients activated by robotic devices. The leg of a patient 

or a robot can be seen as a double rigid link. Locomotion in 

humans and robots involves a periodic occurrences of the 

translational motion about the touchdown point and the 

rotational motion for the double link. The inverted 

pendulum and biped stability are analyzed in [2]. The RIP 

system, as a comprehensive extension to the traditional 

inverted pendulum system, can be foreseen its potentials in 

developing more complicated human rehabilitation systems 

or robot gait models.  

The RIP system is a fourth order nonlinear dynamic 

system. Generally, for the RIP system, there are two control 

stages, i.e., a swing-up control and a balancing control. At 

first, the researchers attempted only to design the swing-up 

control for the RIP system, and the swing-up controller is 

meant to provide the pendulum enough initial kinetic 

energy to throw it into the top position where its potential 

energy may be maximized, therefore the balancing control 

is not needed. Yoshida et al. [3] put forward an energy-

based swing-up control for the RIP system. It has been 

shown in [4] that the energy-based swing-up controller for 

the swing-up stage is effective. However, when the 

pendulum enters into the vicinity of the upright equilibrium 

position, the stability of the pendulum cannot be 

successfully guaranteed if there is a large disturbance 

suddenly applied to the pendulum. This phenomenon leads 

to the necessity of the balancing control, and it indicates the 

importance of choosing an efficient balancing controller.  

In recent years, many modern control methodologies 

have been applied to the design of effective balancing 

controllers for the RIP system, such as adaptive control with 

time-varying uncertainties, composite fuzzy proportional-

derivative control based on the referenced errors of state 

feedback, and neural networks control [5]-[7]. However, 

due to its complex nonlinearity in the RIP dynamic system, 

these methods are theoretically complicated and difficult to 

be directly implemented for the balancing control.  

Simultaneously, several other control techniques, drawn 
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from nonlinear control theory [8], [9], including 

Lyapunov’s direct method [10]-[12], and sliding mode 

control [13]-[15] are also discussed by many researchers. 

There always exists a difficult process to design an 

appropriate Lyapunov function to perform the theoretical 

stability analysis in these methods. Over the past years, 

optimal control theories attract more researchers’ attention.  

Linear-quadratic regulator (LQR) is a typical optimal 

control scheme for the operation of a dynamic system. Park 

et al. [16] and Sukontanakarn and Parnichkun [17] both 

considered a LQR controller for the balancing control stage 

of the RIP system. In order to design a LQR controller, 

engineers always need to engage in an iterative process in 

which they evaluate the optimal controllers verified through 

numerical tests and then attune the parameters to produce a 

controller more consistent with design goals. However, the 

proper selection of the weighting factors in the cost function 

demands a strenuous procedure for the LQR based 

controller design. Besides that, due to the complex 

nonlinearity of our RIP dynamics, LQR as an optimal 

control scheme for linear systems is not optimal for the RIP 

system. In recent years, feedback linearization becomes the 

research interest due to its novel conversion from a 

nonlinear system dynamics to a fully or partly linear one. 

With this approach, the available linear control techniques 

can be utilized for the dynamic control [8]. Feedback 

linearization can be classified into two kinds: input-state 

feedback linearization (ISFL) and input-output feedback 

linearization (IOFL). Several cases [18], [19] with simple 

system dynamics can be proven input-state linearizable. 

However, due to the complexity of our RIP system 

dynamics, the satisfaction of conditions for applying ISFL 

method are hard to be algebraically developed, which is 

given in Theorem 6.2 in [8]. For that reason, we resort to 

the implementation of an IOFL controller [20]-[22] to the 

balancing control stage of the RIP system in this paper. And 

for this reason, the significance of conducting a comparison 

study between the Input-Output Feedback Linearization 

(IOFL) and the LQR draws our attention. 

Linear-quadratic regulator (LQR) [23] is typically 

optimal for the control of a linear system, but may not 

necessarily for a nonlinear system. Input-output feedback 

linearization (IOFL) technique is commonly used in the 

controller design for a nonlinear system dynamics with the 

approach of converting the nonlinear system into a series of 

decoupled linear subsystems. The RIP is modeled as a 

fourth order nonlinear dynamics, and typically its control 

scheme is divided into two stages, i.e., a swing-up control 

and a balancing control. For the balancing stage, larger 

stability zone is desirable. The comparison of the stability 

regions of LQR and IOFL controllers for the nonlinear 

dynamics of the RIP during the balancing stage is studied.  

Designed by linearizing the nonlinear RIP system about the 

equilibrium point, LQR control provides stability within a 

vicinity of the equilibrium point. However, large 

disturbances can throw the RIP system into unstable status, 

and a swing-up control has to be reapplied to drive the 

pendulum into the sensitive equilibrium zone. The IOFL 

controller is designed based on the equivalent partially 

linearized subsystems transformed from the nonlinear 

system via employing a state transformation and an input 

transformation. Only the portion associated with two 

specific states out of the four in the nonlinear dynamics of 

RIP system can be linearized. For the linearized portion, its 

stability is governed by the linear control scheme, and its 

control input being applied into the unlinearizable portion 

of the original dynamics forms a closed loop, and this 

closed loop produces the so-called internal dynamics. 

However, further analysis reveals that the internal dynamics 

may not be guaranteed to be bounded input - bounded 

output (BIBO) stable. Due to this limitation, the stability 

zone of IOFL may not necessarily larger than that of LQR. 

This issue is treated with these techniques: For the 

linearized portion, pole placement is employed to provide a 

globally asymptotical stability so that no swing-up control 

stage is needed, and it induces the feedback gains associated 

with the angle and angular velocity of the inverted 

pendulum, thus the stability is enhanced. For the 

unlinearizable portion, the genetic algorithm [24] by 

minimizing the cost function is utilized to generate the gains 

associated with the angle and angular velocity of the rotary 

arm, thus an augmented stability is guaranteed by the 

genetic algorithm based IOFL technique. This paper 

presents a novel approach of pole-placement genetic 

algorithm synthesized IOFL control for RIP system, and the 

same concept can be applied in various nonlinear systems’ 

control design. Simulink simulations are given to justify the 

theoretical analysis.  

The paper is organized as follows:  Section 2 derives the 

system dynamics of the RIP system and introduces the 

mathematical tools and theorems for designing LQR and 

conventional IOFL controllers.  LQR and IOFL controllers 

are developed and the internal dynamics of the RIP system 

is discussed in Section 3. And the same section also 

includes the pole-placement genetic algorithm synthesized 

IOFL for augmented stability of the RIP control. Section 4 

presents the simulation results. And the last section 

concludes the paper. 

 

II. MODELING OF A ROTARY INVERTED 

PENDULUM SYSTEM 
 

A. Physical model 
A rotary inverted pendulum is a complex electro-

mechanical system. Fig. 1(a) shows a brief sketch of the RIP 

system and its main components. 

  

 
Fig. 1. (a) The physical model of the RIP system. (b) The 

coordinate system of the RIP system 
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The coordinate system of the RIP system is illustrated in 

Fig. 1(b). The fixed world coordinate frame is denoted with 

subscript 0. The frame [𝑋1, 𝑌1, 𝑍1]  is a body coordinate 

system of the rotary arm and [𝑋2, 𝑌2, 𝑍2]  is a body 

coordinate system of the pendulum arm. X1 is aligned with 

the rotary arm and X2  is aligned with the pendulum arm. 

The direction of Z0 and Z1 are both along the axis of the 

motor shaft. Let θ denote the angle between axes  X0  and  

X1 , and α be the angular displacement of the pendulum arm 

rotating clockwisely from the upright position. With the 

help of these coordinate systems, the system dynamics can 

be mathematically formulated using Lagrange’s equation. 

B. Mathematical Model 
In order to apply Lagrange’s equation, the velocity at the 

mass center of the rotary arm and the pendulum arm must 

be calculated at first. The coordinate of the mass center of 

the rotary arm is given as 
 

P02c = 𝑅𝑧(𝜃)𝑇𝑥(𝑙1)𝑅𝑦 (−
𝜋

2
)𝑅𝑧(𝛼)𝑃22𝑐 (1) 

The coordinate at frame 2 is given as [l2c, 0, 0]T . 

Rz and 𝑅𝑦  are the rotational matrices about x axis and y 

axis, respectively. Tx  is the translational matrix along x 

axis. The coordinate at frame 0 is given as 
 

 

P02c = [

−𝑙2𝑐 sin 𝜃 sin 𝛼 + 𝑙1 cos 𝜃
𝑙2𝑐 cos 𝜃 sin 𝛼 + 𝑙1 sin 𝜃

𝑙2𝑐 cos 𝛼
] (2) 

Let J denote the Jacobian matrix about vector P02c with 

respect to [θ, α]T, the following equation is derived: 
 

𝑃̇02𝑐 =  𝐽 [𝜃̇
𝛼̇
]

=  [

−𝑙2𝑐 sin 𝛼 cos 𝜃 − 𝑙1 sin 𝜃 −𝑙2𝑐 sin 𝜃 cos𝛼
𝑙2𝑐 sin 𝛼 sin 𝜃 +𝑙1 sin 𝜃 𝑙2𝑐 cos 𝜃 cos𝛼

0 −𝑙2𝑐 sin 𝛼
] [𝜃̇

𝛼̇
] 

(3) 

The angular velocity of the pendulum about its mass 

center in the frame 2 can also be determined as follows: 
 

ω22 = (𝑅𝑦 (−
𝜋

2
)𝑅𝑧(𝛼))

−1

[
0
0
𝜃̇
] + [

0
0
𝛼̇
]

=  [
𝜃̇ cos 𝛼
−𝜃̇ sin 𝛼

𝛼̇

] 

(4) 

The RIP system consists of two rigid links, one is the 

horizontal rotary arm and another is the rotational 

pendulum arm. The energy as a summation of the kinetic 

energy and the potential energy for both arms are expressed 

as follows: 
 

E1 = 𝐸𝑘1 + 𝐸𝑝1 

(5) 
E2 = 𝐸𝑘2 + 𝐸𝑝2 

Assume that Ep1 = 0, since rotary arm is always parallel 

to the ground plane. Ep2 = 0 is predefined when α = 0, from 

which the formulas for Ek1, 𝐸𝑝1, 𝐸𝑘2  and Ep2  can be 

derived: 

Ek1 =
1

2
(𝐽𝑟 + 𝑚1𝑙1𝑐

2 )𝜃̇2 (6) 

Ek2 =
1

2
𝑚2(𝑃̇02𝑐)

𝑇
(𝑃̇02𝑐)  +

1

2
(𝜔22)

𝑇𝐼2𝜔22 (7) 

Ep2 = −𝑚2𝑔𝑙2𝑐(1 − cos 𝛼) (8) 

Defining the Lagrangian L ≝ Ek1 + 𝐸𝑘2 − 𝐸𝑝1 − 𝐸𝑝2 , 

with two generalized coordinates θ and α , the following 

Lagrange’s equation can be utilized to derive the system 

dynamics: 
 

d

dt

𝜕𝐿

𝜕𝜃̇
−

𝜕𝐿

𝜕𝜃
=  −𝑏𝜃𝜃̇ + 𝜏𝑚 + 𝜏𝐶𝜃 (9) 

d

dt

𝜕𝐿

𝜕𝛼̇
−

𝜕𝐿

𝜕𝛼
=  −𝑏𝛼𝛼̇ + 𝜏𝐶𝛼  (10) 

Substituting (3) and (4) into (9) and (10), the system 

dynamics is obtained: 
 

(𝐽𝑟 + 𝑚1𝑙1𝑐
2 + 𝐶2 sin2 𝛼 + 𝐼2𝑥𝑥 cos2 𝛼

+ 𝑚2𝑙1
2)𝜃̈

+ 2(𝐶2

− 𝐼2𝑥𝑥)𝜃̇𝛼̇ sin 𝛼 cos 𝛼

+ 𝐶3𝛼̈ cos 𝛼 − 𝐶3𝛼̇
2 sin 𝛼

=  −𝑏𝜃𝜃̇ + 𝜏𝑚 + 𝜏𝐶𝜃 

(11) 

C1𝛼̈ + 𝐶3𝜃̈ cos 𝛼 − (𝐶2 − 𝐼2𝑥𝑥)𝜃̇
2 sin 𝛼 cos𝛼

− 𝐶4 sin 𝛼 =  −𝑏𝛼𝛼̇ + 𝜏𝐶𝛼 
(12) 

where in (11) and (12), the coefficients are summarized in 

Table 1.  

 

Table 1: Summarized coefficients of the system dynamics 
C1 = 𝐼2𝑧𝑧 + 𝑚2𝑙2𝑐

2  C2 = 𝐼2𝑦𝑦 + 𝑚2𝑙2𝑐
2  

C3 = 𝑚2𝑙1𝑙2𝑐 − 𝐼2𝑥𝑧 C4 = 𝑚2𝑔𝑙2𝑐 

 

Table 2: Parameters by system identification 

C1 = 9.667 × 10−4 C6 = 1.078 × 10−6 

C2 = 9.731 × 10−4 bα = 6.500 × 10−6 

C3 = 9.404 × 10−4 bθ = 2.973 × 10−5 

C4 = 0.0689 τCθ ≈ 0 

C5 = 0.0017 τCα ≈ 0 

 

The moment of inertia matrix of the pendulum is I2  

which has the form 

I2 = [

I2xx I2xy I2xz

I2yx I2yy I2yz

I2zx I2zy I2zz

] 

 

By system identification, a group of valid parameters is 

provided for studying the system dynamics (see Table 2). 

C. LQR and Input-Output Feedback Linearization 
For a Linear time invariant (LTI) system 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 
(13) 

y = Cx 

Infinite-horizon, continuous-time LQR scheme is defined 

with a cost function 
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CF =  ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + 2𝑥𝑇𝑁𝑢)𝑑𝑡
∞

0

 (14) 

 

 

The feedback control law to minimize the cost function 

can be given as 

u =  −Kx (15) 

where K = R−1(𝐵𝑇𝑃 + 𝑁𝑇) , and P is determined by 

algebraic Riccati equation 
 
 

AT𝑃 + 𝑃𝐴 − (𝑃𝐵 + 𝑁)𝑅−1(𝐵𝑇𝑃 + 𝑁𝑇) + 𝑄
= 0 

(16) 

For a nonlinear system represented as an affine form 
 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 
(17) 

y = h(x) 

The input-output feedback linearization is iterated step by 

step. 
 

𝑦̇ = ∇ℎ(𝑓 + 𝑔𝑢) ≝ 𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 (18) 

If Lgℎ(𝑥) ≠ 0 for all x in the operational region, the input 

transformation can be given as 
 

u =
1

Lgh
(−𝐿𝑓ℎ + 𝑣) (19) 

Equation (19) will result in a linear relation between input 

and output as 
 

𝑦̇ = 𝑣 (20) 

If Lgℎ(𝑥) =  0  for all x in the operational region, 

differentiating y again and so on until the r-th derivative of 

y results in  Lg𝐿𝑓
𝑟−1ℎ(𝑥) ≠ 0, then the control law is derived 

as 
 

u =
1

LgLf
r−1h

(−𝐿𝑓
𝑟ℎ + 𝑣) (21) 

Control law (21) yields a linear relationship between 

input and output as 
 

y(r) = 𝑣 (22) 

The number of differentiation r is called the relative 

degree of the system. It is verified in the next section that 

the relative degree of the RIP system is 2. With the linear 

relationship between input and output shown in (22), the 

controller based on linear control theory, for instance, the 

pole placement techniques, can be designed. 

 

III. CONTROLLER DESIGN AND THE INTERNAL 

DYNAMICS ANALYSIS 
 

A. LQR Controller Design 
In order to design the LQR controller, the nonlinear 

dynamics (11) and (12) is linearized into a linear form. The 

nonlinear Coulomb friction terms are automatically 

dropped, and the last terms are linearized about the 

equilibrium point [𝜃 𝜃̇    𝛼 𝛼̇]𝑇 = [0 0    0 0]𝑇 .  The 

state space model (13) can be obtained with  

 

A = 

[
 
 
 
 
 
0
0
0
0

1

−
𝐶1𝑏𝜃

𝐶1𝐶5 − 𝐶3
2

0
𝐶3𝑏𝜃

𝐶1𝐶5 − 𝐶3
2

0

−
𝐶3𝐶4

𝐶1𝐶5 − 𝐶3
2

0
𝐶4𝐶5

𝐶1𝐶5 − 𝐶3
2

0
𝐶3𝑏𝛼

𝐶1𝐶5 − 𝐶3
2

1

−
𝐶5𝑏𝛼

𝐶1𝐶5 − 𝐶3
2]
 
 
 
 
 

 (23) 

B =  

[
 
 
 
 
 

0
𝐶1

𝐶1𝐶5 − 𝐶3
2

0

−
𝐶3

𝐶1𝐶5 − 𝐶3
2]
 
 
 
 
 

                𝐶 =  [

0
0
1
0

] (24) 

where C1, 𝐶2, 𝐶3, 𝐶4 are given in Section 2.2 and C5 = 𝐽𝑟 +
𝑚1𝑙1𝑐

2 + 𝐼2𝑥𝑥 + 𝑚2𝑙1
2. Iteratively setting proper values to Q, 

R and N by verifying the performance of the LQR 

controller, the simulation can be performed, and the 

simulated results using the LQR controller are presented in 

Section 4 to compare with the results of IOFL. 

B. IOFL Controller Design 
The system dynamics (11) and (12) is represented into the 

affine form (17). 
 

[

𝜃̇
𝜃̈
𝛼̇
𝛼̈

] =  

[
 
 
 
 
 

𝜃̇
1

det(𝑀)
(𝐶1𝜏𝑚 + 𝑎 − 𝑏)

𝛼̇
1

det(𝑀)
(−𝐶3 cos 𝛼 𝜏𝑚 + 𝑐 − 𝑑)

]
 
 
 
 
 

 (25) 

where M, C6, a, b, c, d are simplified coefficients which are 

directly derived from coefficients given in Table 2. These 

new coefficients which are used to reduce the complexity 

of matrix inversion operations in the calculation are given 

as follows: 

M = [
𝐶2 sin2 𝛼 + 𝐶5 + 𝐼2𝑥𝑥 cos2 𝛼 𝐶3 cos 𝛼

𝐶3 cos 𝛼                                    𝐶1
] (26) 

C6 = 𝐶2 − 𝐼2𝑥𝑥  

a = C1 ((−𝑏𝜃 − 𝐶6 sin 2𝛼 𝛼̇)𝜃̇ + 𝐶3 sin 𝛼 𝛼̇2

+ 𝜏𝐶𝜃) 
(27) 

b = C3 cos 𝛼 (
𝐶6

2
sin 2𝛼 𝜃̇2 − 𝑏𝛼𝛼̇ + 𝐶4 sin 𝛼

+ 𝜏𝐶𝛼) 

(28) 

c =  (𝐶5 + 𝐼2𝑥𝑥 cos2 𝛼 + 𝐶2 sin2 𝛼)

⋅ (𝐶4 sin 𝛼 +
𝐶6

2
sin 2𝛼 𝜃̇2

− 𝑏𝛼𝛼̇ + 𝜏𝐶𝛼) 

(29) 

d = C3 cos 𝛼 ((−𝑏𝜃 − 𝐶6 sin 2𝛼 𝛼̇)𝜃̇

+ 𝐶3 sin 𝛼 𝛼̇2 + 𝜏𝐶𝜃) 
(30) 

By observing (25) and applying control law (21), we 

found control law should be as 
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u =  τm =
det(𝑀) 𝑣 − 𝑐 + 𝑑

−𝐶3 cos 𝛼
   (31) 

This control law will render the linear relationship 

between the input and output such as 

𝑦̈ = 𝑣 =  −𝐾3 ⋅ 𝛼 − 𝐾4 ⋅ 𝛼̇ (32) 

C. Internal Dynamics Analysis 
 The internal dynamics of the RIP system is given as 

θ̈ =
1

det(𝑀)
(𝐶1𝑢 + 𝑎 − 𝑏) (33) 

Pluging (31) into (33), the complete form of the internal 

dynamics can be obtained. With the aim of analyzing the 

steady state behavior of the internal dynamics, the concept 

of zero dynamics can be introduced, i.e., the dynamics of 

the system (17) should satisfy the conditions that the output 

should be identically zero. The zero dynamics associated 

with θ is given as 

𝜃̈ = 0 (34) 

The equation (34) is obtained, by forcing v, α, 𝛼̇ equal to 

identically 0. It shows from (34) that the internal dynamics 

will have a form as 

θ = pt + q (35) 

where p and q are both constant real values. This will yield 

a behavior that the α  response is asymptotically stable 

while θ  response is unbounded as a result. With the 

intention of stabilizing the un-linearized portion of the RIP 

dynamics, i.e., the dynamics associated with  θ and 𝜃̇ , a 

full state feedback should be considered. 

D. Pole-Placement Genetic Algorithm Synthesized 

IOFL Controller 
The control law associated with (19) and (20) is pre-

formulated as  

v =  −K1 ⋅ 𝜃 − 𝐾2 ⋅ 𝜃̇ − 𝐾3 ⋅ 𝛼 − 𝐾4 ⋅ 𝛼̇ (36) 

The values of K1, 𝐾2, 𝐾3 and  K4 need to be determined. 

The linearized portion of the RIP dynamics is described as 
d

𝑑𝑡
𝑥̃ =

d

𝑑𝑡
[
𝛼
𝛼̇
] =  [

𝛼̇
𝑣
] =  [

0 1
0 0

] 𝑥̃ +  [
0
1
] 𝑣 (37) 

The pole placement for stabilizing the system dynamics 

(37) is utilized to determine K3 and  K4 . However, in order 

to reduce the influence of the undecided K1, 𝐾2  and un-

linearized θ dynamics on the stability of the linearized α 

dynamics, the poles of the closed form of (37) are placed 

far left from the imaginary axis. 

In the case of RIP system, the poles are chosen as 
[−40,−20], with which the gains can be determined as 

K3 = 800 and K4 = 60. It is found that these gains K3 and 

K4 can ensure that the addition of −K1 ⋅ 𝜃 − 𝐾2 ⋅ 𝜃̇ to the 

control input v will not affect the stability of linearized 

portion of the RIP dynamics α, 𝛼̇ when K1  and K2  are 

selected in the specific ranges, such that K1 ∈ [−20, 0] 
and K2 ∈ [−20,−10], and it will not severely degrade the 

stability of α, 𝛼̇ dynamics. 

Genetic algorithm (GA) is employed to get the optimal 

K1 and K2 gains in the prescribed intervals for K1 and K2  

(feasible sets). The cost function to be minimized is 

specified as 

f(K) = (1 − 𝑒−𝛽)(𝑀𝑝 + 𝐸𝑠𝑠) + 𝑒−𝛽(𝑡𝑠 − 𝑡𝑟) (38) 

where Mp, 𝐸𝑠𝑠 , 𝑡𝑠  and tr  are the overshoot, steady state 

error, settling time and rising time of the α response. β is the 

weighted factor affecting the proportion of the sum of 

overshoot and steady state error to the difference of settling 

time and rising time. In the simulation β = 0.5  is 

empirically chosen to minimize the effect of 𝑡𝑠 − 𝑡𝑟. Then, 

the global optimization problem can be formulated as 

K1, 𝐾2 = arg min
𝐾1∈[−20,0]

𝐾2∈[−20,−10]

𝑓(𝐾)  
(39) 

The genetic algorithm is applied to the optimization 

problem (39) with parameters listed in Table 3. 

 

Table 3. Parameters selected for genetic algorithm 
Population size = 10 Crossover rate = 0.5 

Mutation rate = 0.01 Generation number = 25 

 

As a result of GA based IOFL design techniques 

synthesis, the optimal full state feedback controller design 

is attained for the RIP system, and the gains are determined 

as 

 

K1 = −9.014 K2 = −15.276 K3 = −800 K4 = −60 

 

IV. SIMULATION RESULTS 
 

The simulation block with IOFL controller is shown in 

Fig. 2. In this model, the mechanical dynamics of the RIP 

system and its control is presented. The modeling of its 

sensors and actuators demonstrates much higher frequency 

bands than the mechanical dynamics of the RIP system. 

Without loss of generality, simplifying the modeling of the 

sensors and actuators will not invalidate the controller 

design and its stability analysis of the whole system, since 

a compensator can be added to counterbalance the effects 

of the sensors and actuators in the real system. The 

Simulink block with LQR controller is similar to Fig. 2, the 

only difference is that the input (15) is directly applied to 

the nonlinear dynamics (11) and (12). 

The system simulation results for LQR controller are 

shown in Fig. 3 and Fig. 4. As it shows, LQR can only 

stabilize the pendulum arm when the perturbation is less 

than 0.6 rad away from its equilibrium point: In Fig. 3, the 

pendulum arm can return to the upright position when the 

initial state is α0 = 0.1 rad. However, the pendulum arm 

will rotate a whole round (2π rad ) to get back to the 

equilibrium point when the initial state is α0 = 0.6  rad as 

shown in Fig. 4. It is found that even when the initial state 

a little bit larger than 0.6 rad, the pendulum arm loses its 

stability. 

The system simulation for the pole-placement GA 

synthesized IOFL controller is shown in Fig. 5 and Fig. 6. 

From Fig. 6, it is found that the pole-placement GA 

synthesized IOFL controller can enlarge the stability region 

of the pendulum dynamics from roughly [0 rad, 0.6 rad] in 

LQR case to a much larger region [0 rad, π rad]. According 

to the symmetry of the pendulum arm rotating plane with 
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respect to the up-down direction, the pole-placement GA 

synthesized IOFL balancing controller is globally 

asymptotically stable when perturbations of the state α. 

 

 
Fig. 2. The Simulink model of the RIP system with IOFL 

controller 

 

 
Fig. 3. System simulation with LQR controller, 𝛼0  =

 0.1 𝑟𝑎𝑑 (5.73 deg) 

 

 
Fig. 4. System simulation with LQR controller, 𝛼0  =

 0.6 𝑟𝑎𝑑 (180 deg) 

 
Fig. 5. System simulation with modified IOFL controller, 

𝛼0  =  0.1 𝑟𝑎𝑑 (5.73 deg) 

 

 
Fig. 6. System simulation with modified IOFL controller, 

𝛼0  = 𝜋 𝑟𝑎𝑑 (180 deg) 

 

V. CONCLUSION 
 

In this paper, per the analysis of internal dynamics of the 

RIP system, it is found that the conventional IOFL 

controller may not stabilize the rotary arm and the 

pendulum arm simultaneously, thus the balancing 

performance of the conventional IOFL controller may not 

be better than that of the LQR controller.  

As a solution, a pole-placement genetic algorithm 

synthesized IOFL controller is presented. It is revealed that 

the modified IOFL controller can not only enlarge the 

stability region by bringing the pendulum arm to the upright 

equilibrium point without using an extra swing-up 

controller, but also effectively ensure the stability of the 

internal dynamics of the RIP system.  

It is noticed that the modified IOFL controller has a 

limitation: the dynamic response of the rotary arm (the 

internal dynamics) has a large overshoot before it returns 

back to zero position. However, this issue will not severely 

degrade the overall performance of the modified IOFL 

controller in the balancing control of the RIP system.  
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This novel and synthesized control technique developed 

in this paper is valid for the nonlinear RIP system control. 

Without loss of its generality, the identical technique can be 

extensively applied in the controller design for various 

other complex dynamic systems. 

 

APPENDIX 
 

Nomenclature 

θ Angular displacement of the rotary arm (rad) 

α Angular displacement of the pendulum arm (rad) 

𝜃̇     Angular velocity of the rotary arm (rad/s) 

𝛼̇     Angular velocity of the pendulum arm (rad/s) 

l1 Length of the rotary arm (m) 

l2    Length of the pendulum arm (m) 

l1c   Distance of rotary arm’s mass center to the axis of 

rotation (m) 

l2c   Distance of pendulum arm’s mass center to the two 

arms’ linking point (m) 

m1  Mass of the rotary arm (kg) 

m2  Mass of the pendulum arm (kg) 

Jr    Rotational inertia of the rotary arm (kg∙ m2) 

I2    Moment of inertia matrix of the pendulum arm (kg⋅ m2) 

Ek1 Kinetic energy of the rotary arm (J) 

Ek2 Kinetic energy of the pendulum arm (J) 

Ep1 Potential energy of the rotary arm (J) 

Ep2 Potential energy of the pendulum arm (J) 

bθ Damping ratio of the rotary arm about its rotational 

point (N⋅ m ⋅ s/rad) 

bα    Damping ratio of the pendulum arm about its link with 

the rotary arm (N⋅ m ⋅ s/rad) 

τm   DC motor torque or control input (N⋅ m) 

τCθ Coulomb friction of the rotary arm about its rotational 

point (N⋅ m) 

τCα Coulomb friction of the pendulum arm about its link 

with the rotary arm (N⋅ m) 
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