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Abstract – Fins or extended surfaces are extensively used in engineering applications to increase the efficiency of heat 

transfer of surfaces. Recent applications in compact heat exchangers increase interest in easy and applicable models 

for fin systems. A generalized one-dimensional radial fin model has been developed, where the modified power series 

expansion, the "Frobenius" method, is applied to a specific geometry. The comparison between two models, one-

dimensional and two-dimensional, was presented to determine the thermal characteristics in a simple fin system. The 

one-dimensional model is suitable for compact fin systems, where the ratio is relatively low (K ≤ 6) and the Biot number 

is not very high (Bi < 0.1). The results obtained are promising and motivating, leading to the conclusion that the 

implementation of the generalized model should be effective. 
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I. INTRODUCTION 

Fins or the extended surfaces are extensively used in engineering applications to increase the heat transfer 

efficiency of surfaces. Once the temperature distribution through the fin is known, the heat transfer rate and the 

efficiency can be readily determined.  A large variety of fins geometries are used in heat transfer application, and 

the longitudinal fin of rectangular profile and the one-dimensional radial fin are the most common used [01], [23], 

[25], [10], [28], [17], [06], [09], [26], [14], [21].  

Because the practical importance of the extend surfaces, widely works in this subject is yet developed, and the 

applications in compact heat exchanger increase the interest in easy and applicable models for fins systems [13], 

[12], [24], [27], [18].    

This work is directly connected to the solution of extended surfaces, as a special topic related to heat conduction 

theory, which is extension of the classical heat conduction mathematical formulation [07], [22], [03], ([19; [20]), 

[11], [05]), [04], [15].  

Was developed a generalized one-dimensional radial fin (Figure 01), where the expansion in modified power 

series, the Frobenius Method, is applied for a particular geometry (Figure 02). The two-dimensional straight radial 

fin, described for [08], was used as a reference for comparison.  

II. THEORETICAL ANALYSIS 

A. Frobenius Method 

Consider steady-state, one-dimensional heat conduction through a radial fin, with constant conductivity, k and 

subjected an ambient temperature 𝑇∞. 
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Fig. 1. Generalized Geometry for One-Dimensional Radial Fin Analysis. 

�̇�𝑟 − �̇�𝑟+𝑑𝑟 = 2ℎ2 (𝛼𝑟 + 𝐿𝑀)𝑑𝑟[𝑇(𝑟) − 𝑇∞]                                                                                                                      01 

�̇�𝑟+𝑑𝑟 = �̇�𝑟 −
𝑑�̇�

𝑑𝑟
𝑑𝑟                                                                                                                                                                  02 

�̇�(𝑟) = −𝑘𝐴(𝑟)
𝑑𝑇

𝑑𝑟
= −𝑘𝛼𝑟𝐿𝑀

𝑑𝑇

𝑑𝑟
                                                                                                                                       03 

𝑑

𝑑𝑟
[𝑘𝛼𝑟𝐿𝑀

𝑑𝑇(𝑟)

𝑑𝑟
] = 2ℎ2[𝛼𝑟 + 𝐿𝑀][𝑇(𝑟) − 𝑇∞]                                                                                                              04 

𝑑

𝑑𝑟
[𝑟

𝑑𝑇(𝑟)

𝑑𝑟
] =

2ℎ2[𝛼𝑟 + 𝐿𝑀]

𝑘𝛼𝐿𝑀

[𝑇(𝑟) − 𝑇∞]                                                                                                                        05 

By definition: 

𝜃(𝑟) =
𝑇(𝑟) − 𝑇∞

𝑇(𝑟𝑖) − 𝑇∞

                                                                                                                                                                    06 

Then, we have: 

𝑟2
𝑑2𝜃(𝑟)

𝑑𝑟2
+ 𝑟

𝑑𝜃(𝑟)

𝑑𝑟
=

2ℎ2[𝛼𝑟2 + 𝐿𝑀𝑟]

𝑘𝛼𝐿𝑀

𝜃(𝑅)                                                                                                                  07 

𝑅 =
𝑟 − 𝑟𝑖

𝑟𝑜 − 𝑟𝑖

        →         𝑟 = 𝐿𝑜𝑅 + 𝑟𝑖  𝑤𝑖𝑡ℎ   𝐿𝑜 = 𝑟𝑜 − 𝑟𝑖                                                                                                 08 

[𝑅 +
𝑟𝑖

𝐿𝑜

]2
𝑑2𝜃(𝑅)

𝑑𝑅2
+ (𝑅 +

𝑟𝑖

𝐿𝑜

)
𝑑𝜃(𝑅)

𝑑𝑅
=

2ℎ2[𝛼(𝐿𝑜𝑅 + 𝑟𝑖)2 + 𝐿𝑀(𝐿𝑜𝑅 + 𝑟𝑖)]

𝑘𝛼𝐿𝑀

𝜃(𝑅)                                                 09 

ℙ(𝑅)
𝑑2𝜃(𝑅)

𝑑𝑅2
+ ℚ(𝑅)

𝑑𝜃(𝑅)

𝑑𝑅
− 𝕎(𝑅)𝜃(𝑅) = 0                                                                                                               10 

where 

ℙ(𝑅) = 𝑃1 𝑅
2 + 𝑃2𝑅 + 𝑃3;  ℚ(𝑅) = 𝑄1𝑅 + 𝑄2;  𝕎(𝑅) = 𝑊1𝑅2 + 𝑊2𝑅 + 𝑊3                                                         11 

and 

𝑃1 = 1.0; 𝑃2 = 2𝐾1; 𝑃3 = 𝐾1
2;  𝑄1 = 1.0; 𝑄2 = 𝐾1;  𝑊1 =

2𝐵𝑖2𝐾2

𝐾2
;  𝑊2 = 𝐵𝑖2[

4𝐾2𝐾1

𝐾2
+

2𝐾

𝛼
];𝑊3 = 𝐵𝑖2[

2𝐾2𝐾1

𝐾2
+

2𝐾𝐾1

𝛼
]     12 

with dimensionless groups defined as: 
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𝐾 =
𝐿𝑜

𝑤/2
; 𝐾1 =

𝑟𝑖

𝐿𝑜

 ; 𝐾2 =
𝐿𝑀

𝑤/2
; 𝑤 = 𝛼𝑟𝑖  ; 𝐿𝑀 = 𝑤 ; 𝐵𝑖1 =

ℎ2(
𝑤
2

)

𝑘
; 𝐵𝑖2 =

ℎ2(
𝑤
2

)

𝑘
                                                    13 

The proposal, in this work, for one validation of the general model (Figure 01), is realized a comparison with a 

“Two-Dimensional Straight Radial Fin”, presented by COTTA and MIKHAILOV (1997). In this case, the 

following simplifications were needed: 

𝐵𝑖1 → ∞; 𝑟𝑖 = 0 →  𝐾1 = 0 𝑎𝑛𝑑 𝛼 → ∞                                                                                                                             14 

Then, 

𝑃2 = 0; 𝑃3 = 0; 𝑄2 = 0; 𝑊2 = 0 𝑎𝑛𝑑 𝑊3 = 0                                                                                                                 15 

and 

𝑅2
𝑑2𝜃(𝑅)

𝑑𝑅2
+ 𝑅

𝑑𝜃(𝑅)

𝑑𝑅
− 𝑊1𝑅2𝜃(𝑅) = 0                                                                                                                            16 

For convenience, was defined 

𝐾2 = 2;  𝛽2 = 𝑊1  𝑎𝑛𝑑  𝑅′ = 𝛽𝑅                                                                                                                                          17 

In this case, 

𝑅′2 𝑑2𝜃(𝑅)

𝑑𝑅2
+ 𝑅′

𝑑𝜃(𝑅)

𝑑𝑅
− 𝑅′2

𝜃(𝑅) = 0                                                                                                                              18 

or 

1

𝑅′

𝑑

𝑑𝑅′
[𝑅′

𝑑𝜃

𝑑𝑅′
] − 𝜃(𝑅′) = 0                                                                                                                                                  19 

In this work the equation 18 is more convenient, because the interest is in obtaining a particular solution of 

equation 10, by the expansion in modified series of power, called "Frobenius method" in the specialized literature. 

The Equation 18 has a singular regular point in R’=0, and By Georg Frobenius (1849-1917) [04] (1986, pag.243), 

[15] (1969, pag.190), [03] (1966, pag.231), [11] (1962, pag.143), [21] (1955, pag.46-59), [07] (1947, pag.374-

376): 

𝜃(𝑅′) = ∑ 𝑎𝑛𝑅′𝑛+𝑠
                                                                                                                                                                20

∞

𝑛=0

 

𝜃′(𝑅′) =
𝑑𝜃(𝑅′)

𝑑𝑅′
= ∑ 𝑎𝑛−1(𝑛 + 𝑠 − 1)𝑅′𝑛+𝑠

                                                                                                                 21

∞

𝑛=1

 

𝜃′′(𝑅′) =
𝑑2𝜃(𝑅′)

𝑑𝑅′2 = ∑ 𝑎𝑛−2(𝑛 + 𝑠 − 2)(𝑛 + 𝑠 − 3)𝑅′𝑛+𝑠
                                                                                        22

∞

𝑛=2

 

Then 

ℙ(𝑅) ∑ 𝑎𝑛−2(𝑛 + 𝑠 − 2)(𝑛 + 𝑠 − 3)𝑅𝑛+𝑠 + ℚ(𝑅) ∑ 𝑎𝑛−1(𝑛 + 𝑠 − 1)𝑅𝑛+𝑠∞
𝑛=1 − 𝕎(𝑅) ∑ 𝑎𝑛𝑅𝑛+𝑠  = 0         ∞

𝑛=0
∞
𝑛=2 23  

or 
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𝑅′2
∑ 𝑎𝑛(𝑛 + 𝑠)(𝑛 + 𝑠 − 1)𝑅′𝑛+𝑠−2

+ 𝑅′ ∑ 𝑎𝑛(𝑛 + 𝑠)𝑅𝑛+𝑠−1

∞

𝑛=0

− 𝑅′2
∑ 𝑎𝑛𝑅𝑛+𝑠  = 0

∞

𝑛=0

∞

𝑛=0

                                    24 

By algebraic manipulation, the following indicial equation was obtained: 

𝑎0[(𝑠2 − 𝑠) + 𝑠]𝑅′𝑠
= 0             𝑤𝑖𝑡ℎ             𝑎0 ≠ 0  𝑎𝑛𝑑 𝑠 = 0                                                                                    25 

The roots of the indicial equation are equal zero and the recurrence rule is given by 

𝑎𝑛 =
𝑎𝑛−2

𝑛2
                                                                                                                                                                                  26  

or 

𝑎2 =
𝑎0

22
;  𝑎4 =

𝑎0

2242
 ;  𝑎6 =

𝑎0

224262
…                                                                                                                                27 

For the situation in analysis, two equal roots, there are two linearly independent solutions, which constitute a 

fundamental system of solution [15]. The first is: 

𝜃1(𝑅) = 1 + ∑ 𝑎2𝑚(𝛽𝑅)2𝑚

∞

𝑚=1,2,3..

;    𝑎2𝑚 =
1

22𝑚(𝑚!)2
                                                                                                    28 

The second linearly independent solution contains a logarithmic term and has a form: 

𝜃2(𝑅) = [ln(𝛽𝑅)]𝜃1(𝑅) + ∑ 𝐴𝑚(𝛽𝑅)𝑚

∞

𝑚=1,2,3…

                                                                                                                  29 

By [07], and [04] the more convenient expression is 

𝜃2(𝑅) = − [ln (
𝛽𝑅

2
) + 𝛾] 𝜃1(𝑅) + ∑ 𝑎2𝑚𝐻𝑚(𝛽𝑅)2𝑚

∞

𝑚=1,2,3…

                                                                                       29.1 

where 

𝐻𝑚 =
1

𝑚
+

1

𝑚 − 1
+ ⋯ +

1

2
+ 1    𝑎𝑛𝑑 𝛾 ≅ 0.5772                                                                                                          30 

𝛾 is known as the Euler-Mascheroni [04] (1986, pag.247) constant.  

Then 

𝜃(𝑅) = 𝑎0𝜃1(𝑅) + 𝑎1𝜃2(𝑅)                                                                                                                                                   31 

𝜃(𝑅) = 𝑎0[1 + ∑ 𝑎2𝑚(𝛽𝑅)2𝑚]

∞

𝑚=1,2,3..

+ 𝑎1[− [ln (
𝛽𝑅

2
) + 𝛾] 𝜃1(𝑅) + ∑ 𝑎2𝑚𝐻𝑚(𝛽𝑅)2𝑚

∞

𝑚=1,2,3…

 ]                           32 

or 

𝜃(𝑅) = 𝑎0[1 + ∑ 𝑎2𝑚(𝛽𝑅)2𝑚]

∞

𝑚=1,2,3..

− 𝑎1 {[ln (
𝛽𝑅

2
) + 𝛾] [1 + ∑ 𝑎2𝑚(𝛽𝑅)2𝑚

∞

𝑚=1,2,3..

] − ∑ 𝑎2𝑚𝐻𝑚(𝛽𝑅)2𝑚

∞

𝑚=1,2,3…

 }          32.1 

The first boundary condition is defined by [08]: 
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𝜃(0) = 1   →     𝑎0 = 1 + 𝑎1 [ln (
𝛽𝑅𝑏

2
) + 𝛾]                                                                                                                     33 

Finally, 

𝜃(𝑅) = 𝜃1(𝑅) + 𝑎1 {[ln (
𝛽𝑅𝑏

2
) + 𝛾] 𝜃1(𝑅) + 𝜃2(𝑅)}                                                                                                   33.1 

𝜃′(𝑅) = 𝜃1
′(𝑅) + 𝑎1 {[ln (

𝛽𝑅𝑏

2
) + 𝛾] 𝜃1

′(𝑅) + 𝜃2
′(𝑅)}                                                                                             33.2 

where (Figure 02) 

𝑅𝑏 = 𝑅 → 0                                                                                                                                                                                 34 

For the second boundary conditions: 

𝜃′(1) = −𝐵𝑖2𝐾𝜃(1)                                                                                                                                                                  35 

Then, 

−[𝜃1(1) + 𝐵𝑖2𝐾𝜃1
′(1)] = 𝑎1 [ln (

𝛽𝑅𝑏

2
) + 𝛾] [𝜃1(1) + 𝐵𝑖2𝐾𝜃1

′(1)] + [𝜃2(1) + 𝐵𝑖2𝐾𝜃2
′ (1)]                              35.1 

In this case, 

𝑎1 =
−[𝜃1(1) + 𝐵𝑖2𝐾𝜃1

′(1)]

[ln (
𝛽𝑅𝑏

2
) + 𝛾] [𝜃1(1) + 𝐵𝑖2𝐾𝜃1

′(1)] + [𝜃2(1) + 𝐵𝑖2𝐾𝜃2
′ (1)]

                                                                            36 

The total exchange heat transfer is given by 

�̇� =
−𝑘𝐴𝑏(𝑇𝑏 − 𝑇∞)𝜃′(0)

𝐿0

                                                                                                                                                        37
̇

 

The dimensionless exchange heat transfer is written in the form, by definition 

𝑄𝑏 =
�̇�

ℎ2𝐴𝑏(𝑇𝑏 − 𝑇∞)
      →       𝑄𝑏 =

−1

𝐵𝑖2𝐾
(

𝑑𝜃

𝑑𝑅
)𝑅=0                                                                                                         38 

𝐴𝑏  and 𝑇𝑏   are the base area and the base temperature respectively 

Efficiency is given by 

𝜂 =
−1

𝐵𝑖2𝐾(1 + 𝐾)
(

𝑑𝜃

𝑑𝑅
)𝑅=0                                                                                                                                                      39 

A. Straight Radial Fin 

The formulation, in dimensionless form, is written as: 

1

𝑅

𝜕

𝜕𝑅
[𝑅

𝜕𝜃(𝑅, 𝑌

𝜕𝑅
] + 𝐾2

𝜕2𝜃(𝑅, 𝑌)

𝜕𝑌2
= 0                                                                                                                                 40 

with boundary conditions 

𝜃(𝑅𝑏 , 𝑌) = 1;            
𝜕𝜃(1, 𝑌)

𝜕𝑅
+ 𝐵𝑖2𝐾𝜃(1, 𝑌) = 0,            0 ≤ 𝑌 ≤ 1                                                                            41 
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𝜕𝜃(𝑅, 0)

𝜕𝑌
= 0;            

𝜕𝜃(𝑅, 1)

𝜕𝑌
+ 𝐵𝑖2𝐾𝜃(𝑅, 1) = 0,            𝑅𝑏 ≤ 𝑅 ≤ 1                                                                 42 

 

Fig. 2. Geometry System for Straight Radial Fin Analysis by [08]. 

Dimensionless groups are defined as: 

𝐾 =
𝑟𝑒

𝑤/2
;          𝑅𝑏 =

𝑟𝑏

𝑟𝑒

 ;         𝐵𝑖2 =
ℎ𝑒(

𝑤
2

)

𝑘
                                                                                                                      43 

The exact solution of the Two-Dimensional Straight Radial Fin is obtainable by separation of variables, and the 

dimensionless average temperature at each circumferential section is given by [08]: 

𝜃𝐴𝑣(𝑅) = 2 ∑
𝑠𝑖𝑛2𝜆𝑛

𝜆𝑛[𝜆𝑛 + 𝑠𝑖𝑛𝜆𝑛𝑐𝑜𝑠𝜆𝑛]
𝐹(𝜆𝑛 , 𝑅)                                                                                                                 44

∞

𝑛=1

 

where, 

𝐹(𝜆𝑛, 𝑅) =
{𝕂0(𝜆𝑛𝐾𝑅)[𝐵𝑖2𝕀0(𝜆𝑛𝐾) + 𝜆𝑛𝕀1(𝜆𝑛𝐾)] − 𝕀0(𝜆𝑛𝐾𝑅)[𝐵𝑖2𝕂0(𝜆𝑛𝐾) − 𝜆𝑛𝕂1(𝜆𝑛𝐾)]}

{𝕂0(𝜆𝑛𝐾𝑅𝑏)[𝐵𝑖2𝕀0(𝜆𝑛𝐾) + 𝜆𝑛𝕀1(𝜆𝑛𝐾)] − 𝕀0(𝜆𝑛𝐾𝑅𝑏)[𝐵𝑖2𝕂0(𝜆𝑛𝐾) − 𝜆𝑛𝕂1(𝜆𝑛𝐾)]}
                     45 

𝕀𝜈 , 𝕂𝜈 are modified Bessel functions and the 𝜆𝑛′𝑠 are obtained from the solution of the transcendental equation: 

𝜆𝑛𝑡𝑎𝑛𝜆𝑛 = 𝐵𝑖2                                                                                                                                                                           46 

For small R [19] (1989, pag.493): 

𝕀𝑛(𝑅) ≅
1.0

2𝑛𝑛!
𝑅𝑛                                                                                                                                                                        47 

𝕂𝑛(𝑅) ≅ −𝑙𝑛𝑅  𝑓𝑜𝑟 𝑛 = 0  𝑎𝑛𝑑 𝕂𝑛(𝑅) ≅
2𝑛−1(𝑛 − 1)!

𝑅𝑛
  𝑓𝑜𝑟  𝑛 ≠ 0                                                                        48 

For 𝑅 ≥ 10: 

𝕀0(𝑅) ≅
0.3989𝑒𝑅

𝑅
1
2

{1 +
1

8𝑅
+

9

128𝑅2
+

75

1024𝑅3
}                                                                                                            49 

𝕀1(𝑅) ≅
0.3989𝑒−𝑅

𝑅
1
2

{1 +
3

8𝑅
−

15

128𝑅2
+

105

1024𝑅3
}                                                                                                          50 

𝕂0(𝑅) ≅
1.2533𝑒−𝑅

𝑅
1
2

{1 −
1

8𝑅
+

9

128𝑅2
−

75

1024𝑅3
}                                                                                                        51 
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𝕂1(𝑅) ≅
1.2533𝑒−𝑅

𝑅
1
2

{1 +
3

8𝑅
−

15

128𝑅2
+

105

1024𝑅3
}                                                                                                         52 

For large R: 

𝕀𝑛(𝑅) ≅
𝑒𝑅

√2𝜋𝑅
                                                                                                                                                                          53 

𝕂𝑛(𝑅) ≅ √
𝜋

2𝑅
𝑒−𝑅                                                                                                                                                                    54 

The total heat exchange through the fin’s base, in dimensionless form, is given by: 

𝑄𝑏 = ∑
𝑠𝑖𝑛2𝜆𝑛

[𝜆𝑛 + 𝑠𝑖𝑛𝜆𝑛𝑐𝑜𝑠𝜆𝑛]
𝐺(𝜆𝑛)                                                                                                                                      55

∞

𝑛=1

 

where, 

𝐺(𝜆𝑛) =
{𝕂1(𝜆𝑛𝐾𝑅𝑏)[𝐵𝑖2𝕀0(𝜆𝑛𝐾) + 𝜆𝑛𝕀1(𝜆𝑛𝐾)] + 𝕀1(𝜆𝑛𝐾𝑅𝑏)[𝐵𝑖2𝕂0(𝜆𝑛𝐾) − 𝜆𝑛𝕂1(𝜆𝑛𝐾)]}

{𝕂0(𝜆𝑛𝐾𝑅𝑏)[𝐵𝑖2𝕀0(𝜆𝑛𝐾) + 𝜆𝑛𝕀1(𝜆𝑛𝐾)] − 𝕀0(𝜆𝑛𝐾𝑅𝑏)[𝐵𝑖2𝕂0(𝜆𝑛𝐾) − 𝜆𝑛𝕂1(𝜆𝑛𝐾)]}
                         56 

𝜂 =
𝑄𝑏

𝐵𝑖2𝐾2
                                                                                                                                                                                   57 

Table 1. Obtained Results for Modified Bessel Functions. 

X K0(X) K0(X) I0(X) I0(X) K1(X) K1(X) I1(X) I1(X) 

1.00E - 01 2.427E + 00 2.426E + 00 1.003E + 00 1.003E + 00 9.854E + 00 1.000E + 01 5.010E - 02 5.000E - 02 

1.00E + 00 4.210E - 01 4.210E - 01 1.266E + 00 1.376E + 00 6.019E - 01 6.272E - 01 5.906E - 01 4.394E - 01 

2.00E + 00 1.139E - 01 1.135E - 01 2.280E + 00 2.270E + 00 1.399E - 01 1.404E - 01 1.591E + 00 1.606E + 00 

3,00E + 00 3.474E - 02 3.471E - 02 4.881E + 00 4.867E + 00 4.016E - 01 4.020E - 01 3.953E + 00 3.970E + 00 

4.00E + 00 1.116E - 02 1.116E - 02 1.130E + 01 1.129E + 01 1.248E - 02 1.249E - 02 9.760E + 00 9.771E + 00 

5.00E + 00 3.691E - 03 3.691E - 03 2.724E + 01 2.723E + 01 4.045E - 03 4.045E - 03 2.434E + 01 2.434E + 01 

6.00E + 00 1.244E - 03 1.244E - 03 6.723E + 01 6.722E + 01 1.344E - 03 1.344E - 03 6.134E + 01 6.135E + 01 

7.00E + 00 4.248E - 04 4.248E - 04 1.686E + 02 1.686E + 02 4,542E - 03 4,542E - 03 1.560E + 02 1.560E + 02 

8.00E + 00 1.465E - 04 1.465E - 04 4.276E + 02 4.275E + 02 1.554E - 04 1.554E - 04 3.999E + 02 3.999E + 02 

9.00E + 00 5.088E - 05 5.088E - 05 1.094E + 03 1.093E + 03 5.364E - 05 5.364E - 05 1.030E + 03 1.031E + 03 

9.09E + 00 1,975E - 05 1,975E - 05 2.561E + 03 2.561E + 03 2.072E - 05 2.072E - 05 2.428E + 03 2.428E + 03 

Bold: M. NECATTI ÖZISIK (1980; 1989) 

Table 2. Six First Eigenvalue of the Equation 46 

  𝑩𝒊𝟐                       𝝀𝟏                        𝝀𝟐                              𝝀𝟑                                 𝝀𝟒                                𝝀𝟓                                    𝝀𝟔 

0.101 0.3125 3.1734 6.2992 9.4354 12.5744   15.7143 

0.201 0.4338 3.2042 6.315 9.446 12.5823   15.7207 

0.301 0.5226 3.2344 6.3307 9.4566 12.5903   15.7271 
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0.401 0.5939 3.2638 6.3463 9.4671 12.5982   15.7334 

0.501 0.6538 3.2926 6.3618 9.4776 12.6061   15.7398 

0.601 0.7055 3.3206 6.3771 9.488 12.614  15.7461 

0.701 0.751 3.348 6.3924 9.4984 12.6218    15.7524 

0.801 0.7914 3.3746 6.4075 9.5088 12.6297    15.7587 

0.901 0.8277 3.4006 6.4226 9.5191 12.6375    15.7650 
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                       Fig. 3. Implemented Modified Bessel Functions 

III. RESULTS AND DISCUSSION 

In Figure 04, below, the temperature is measured as a function of the radial position for aspect ratio K = 2. The 

comparison between the models for this aspect ratio value demonstrates that the models, one-dimensional and 

two-dimensional, present equivalent results for relatively low Biot number. The difference, for average 

temperature, is only noticeable for Biot number near and above 10. 
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                  Fig. 4.  Average Temperature for Aspect Ratio K = 2 versus Biot Number. 
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Through Figure 05, with a K = 6 aspect ratio, it can be observed that the difference between the models, one-

dimensional and two-dimensional, already occurs for Biot number values above 1.0.  The same occurs for aspect 

ratio K = 10 (Figure 06).  
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                     Fig. 5. Average Temperature for Aspect Ratio K = 6 versus Biot Number. 
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                  Fig. 6. Average Temperature for Aspect Ratio K = 10 versus Biot Number. 
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                   Fig. 7. Average Temperature for Biot Number Bi2 = 20 versus Aspect Ratio. 
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Figure 07, above, demonstrates that for high Biot number value, Biot equal to 20, even for low aspect ratio, the 

difference between models is noticeable and meaningful. The difference between the models, one-dimensional 

and two-dimensional, becomes more evident through the rate of heat transfer dimensionless, Figure 08.  

The one-dimensional model works properly for low aspect ratio value, in a wide range of Biot number. In fact, 

the results obtained show that the one-dimensional model presented is suitable for compact systems, where the 

aspect ratio of the fin is low and the Biot number is not very high.  

In Figure 09 there are values for efficiency according to the heat transfer coefficient, where the length of the 

base and the conductivity of the fin were obtained from an electric motor finned, with K close to 6. It is observed 

that there is a maximum efficiency for the exchange of heat in all cases. For K = 6 The maximum efficiency 

corresponds to an approximate value of 80 W/ (m2. K), for the heat transfer coefficient, in Biot number less than 

7.3 10-3.  
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                       Fig. 8. Total Dimensionless Heat Exchange versus Biot Number. 
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                      Fig. 9. Effectiveness versus Convection Heat Transfer Coefficient.   
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IV. CONCLUSIONS 

The comparison between two models, one-dimensional and two-dimensional, was presented to determine the 

thermal characteristics in a simple radial fin system.  

The one-dimensional model is simpler and easier to be deployed than the two-dimensional model, as 

demonstrated by the formulation of Frobenius Method, implemented to a particular geometric situation, used in 

electrical motors.  

The one-dimensional model is suitable for compact fins systems, where the aspect ratio is relatively low (K ≤ 

6) and the number of Biot is not very high (Bi<0.1). The smaller the value of the aspect ratio, the greater the range 

of Biot number in which the one-dimensional model works properly.  

It is a first approximation to the generalized one-dimensional model using the Frobenius method, and it can to 

be used, for example, in finned compact heat exchangers, because of the low aspect ratio. 

 The results obtained are promising and motivating, leading to the conclusion that the implementation of the 

generalized model should be effective.    
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