

Copyright © 2019 IJEIR, All right reserved

202

International Journal of Engineering Innovation & Research

Volume 8, Issue 5, ISSN: 2277 – 5668

ACO Based on EDF for Real Time Task Scheduling

Myungryun Yoo* and Takanori Yokoyama
Department of Computer Science, Tokyo City University, Japan.

Date of publication (dd/mm/yyyy): 15/10/2019

Abstract – The Ant Colony Optimization (ACO) algorithms are computational models inspired by the collective

foraging behavior of ants. By looking at the strengths of ACO, they are the most appropriate for scheduling of tasks in

soft real time systems. In this paper, ACO based scheduling algorithm for real time operating systems (RTOS) has been

proposed. The proposed algorithm is evaluated in terms of success ratio & context switch.

Keywords – Real Time System, Scheduling, ACO.

I. INTRODUCTION

The objective of real time task scheduler is to reduce the deadline miss of tasks in the system as much as possible

when we consider soft real time system [1]. Real time scheduling techniques can be broadly divided into two

categories: Off-line and On-line. Off-line algorithms assign all priorities to tasks at design time, and priorities are

remained constantly for the lifetime of a task. On-line algorithms assign priorities to tasks at runtime, based on

execution parameters of tasks. On-line scheduling can be either with static priority or dynamic priority. Rate

Monotonic (RM) [2] and Deadline Monotonic (DM) [3] are examples of On-line scheduling with static priority

[2]. Earliest Deadline First (EDF) [2] and Least Slack Time First (LST) [4] are examples of On-line scheduling

with dynamic priority. EDF and LST algorithms are optimal under the condition that the jobs are preemptive,

there is only one processor and the processor is not overloaded [5, 6]. But the limitation of these algorithms is,

their performance decreases exponentially if system becomes slightly overloaded [7].

Several characteristics make ACO a unique approach: it is constructive, population-based meta-heuristic which

exploits an indirect form of memory of previous performance [8, 9, 10, 11]. Therefore in this paper, the same

approach has been applied for real time operating systems.

The rest of this paper is organized as follows. In section 2, our system model is presented. In section 3 related

work is described. In section 4 our proposed algorithm is described and discussed. In section 5, a simulation-based

evaluation of proposed algorithm is explained and section 6 is conclusions.

II. SYSTEM MODEL

The deadline and required computation time of the task are prepared when the task is released. The task set is

assumed to be preemptive. We have assumed that the system is not having resource contention problem.

In soft real time systems, each task has a positive value. The goal of the system is to obtain as much value as

possible. If a task succeeds, then the system acquires its value. If a task fails, then the system gains less value from

the task [11]. Here, we propose an algorithm that applies to soft real time system. The value of the task has been

taken same as its computation time required [13].

III. RELATED WORK

We will discuss about ACO and EDF. Kotecha’s algorithm [12] is combination of two scheduling algorithms:

EDF algorithm and ACO based Scheduling algorithm.

Copyright © 2019 IJEIR, All right reserved

203

International Journal of Engineering Innovation & Research

Volume 8, Issue 5, ISSN: 2277 – 5668

A. Ant Colony Optimization

Social insects that live in colonies, such as ants, termites, wasps and bees, develop specific tasks according to

their role in the colony. One of the main tasks is the search for food. Real ants, when searching for food, can find

such resources without visual feedback and they can adapt to changes in the environment, optimizing the path

between the nest and the food source. This fact is the result involves positive feedback, given by the continuous

deposit of a chemical substance, known as pheromone.

A classic example of the construction of a pheromone trail in the search for a shorter path is shown in Figure 1

and was first presented by Colony [14]. In Figure 1(a), there is a path between food and nest established by the

ants. In Figure 1(b), an obstacle is inserted in the path. Soon, ants spread to both side of the obstacle, since there

is no clear trail to follow as shown Figure 1(c). As the ants go around the obstacle and find the previous pheromone

trail again, a new pheromone trail will be formed around the obstacle. This trail will be stronger in the shortest

path than in the longest path, as shown in Figure 1(d).

(a) (b)

(c) (d)

Fig. 1. Ant colony optimization.

B. EDF Algorithm

The priority of each task is decided based on value of its deadline. The task with the nearest deadlines has the

highest priority. Number of tasks equivalent to number of processors is selected for execution on different

processors by centralized scheduler.

C. Scheduling Algorithm with ACO

Social insects that live in colonies, such as ants, termites, wasp.

The scheduling algorithm is required to execute when a new task arrives or presently running task completes.

The main steps of the proposed algorithm are given as following.

1. Construct tour of different Ants and Produce the task Execution Sequence

First find probability of each node using equation (1). Each schedulable task is considered as a node and

probability of each node to be selected for execution is decided using pheromone τ and heuristic value η.

Copyright © 2019 IJEIR, All right reserved

204

International Journal of Engineering Innovation & Research

Volume 8, Issue 5, ISSN: 2277 – 5668

𝑝𝑖(𝑡) =
(τ𝑖 (t))α∗(η𝑖(t))β

∑ (τ𝑖 (t))α∗(η𝑖(t))β
𝑙∈𝑅1

 (1)

Where,

pi(t) is the probability of ith node at time t.

i∈ 𝑁1 and N1 is set of schedulable tasks at time t.

τi(t) is pheromone on ith node at time t.

ηi is heuristic value of ith node at t, which can be determined by equation (2).

𝜂𝑖 =
𝐾

𝐷𝑖−𝑡
 (2)

Here,

t is current time.

K is constant.

Di is absolute deadline of ith node.

α and β are constants which decide importance of τ and η.

Ants construct their tour based on the value of p of each node as per following:

Ant 1: Highest p > second highest p > third highest p >….

Ant 2: Second highest p > highest p > third highest p >…

Ant 3: Third highest p > second highest p > highest p >….

Suppose at time t, there are 4 schedulable tasks. As shown in Figure 1, each task will be considered as a node

and from each node; one ant will start its journey. If we consider the priorities of all the nodes are in decreasing

order of A, B, C, D; ants will traverse different nodes as per following:

Ant 1: A > B > C > D

Ant 2: B > A > C > D

Ant 3: C > A > B > D

Ant 4: D > A > B > C

2. Analyze the task Execution Sequences generated for available Number of Processor

After all ants have completed their tour, evaluate the performance of different ants’ travel. We have analyzed

this based on ratio of number of success tasks and number of missed tasks. Find out maximum two best journeys

of ants and update the value of pheromone accordingly.

3. Update the Value of Pheromone

Pheromone updating on each node is done in two steps:

(a) Pheromone Evaporation: Pheromone evaporation is required to forget bad travel of ants and to encourage new

paths. Value of τ is updated using equation (3).

Copyright © 2019 IJEIR, All right reserved

205

International Journal of Engineering Innovation & Research

Volume 8, Issue 5, ISSN: 2277 – 5668

τ𝑖(𝑡 + 1) = (1 − 𝜌)τ𝑖(𝑡) (3)

Where,

𝜌 is a constant.

𝑖 ∈ 𝑅𝑙; 𝑅𝑙 is set of all tasks.

(b) Pheromone Laying: Pheromone will be laid only for two best journeys of ants. Select the best journey and put

pheromone depending on their order of visited node. Amount of pheromone (Δτ) laid will be different at each

node i.e. the nearest node will get highest amount of pheromone and far most node will get least.

𝜏𝑖(𝑡 + 1) = 𝜏𝑖(𝑡) + Δ𝜏𝑖 (4)

Where,

𝑖 ∈ 𝑁2; 𝑁2 is set of tasks executed by the ant.

Δ𝜏＝
𝑝ℎ

𝑠
 (5)

Here,

𝑝ℎ = 𝐶 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑑 𝐽𝑜𝑏𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑒𝑑 𝐽𝑜𝑏𝑠+1
 (6)

s is sequence number of node visited by the ant during the best travel.

Value of C is constant (preferably 0.1).

4. Decide Probability of Each Task and select the Task for Execution

After updating pheromone, again find out probability of each node using equation (1) and select the task for

execution having the highest probability value.

D. Kotecha’s algorithm

Kotecha’s algorithm is combination of both of these algorithms and it works as per following:

1. During underload condition, the algorithm uses EDF algorithm and priority of jobs will be decided

dynamically depending on its deadline.

2. During overloaded condition, it use ACO based algorithm, priority of jobs will be decided depending on

pheromone value laid on each schedulable task and heuristic function.

Initially the proposed algorithm uses EDF algorithm considering that the condition is not overloaded. But when

two consecutive jobs miss the deadline, it will be identified, as overloaded condition and the algorithm will switch

to ACO based algorithm. After 10 jobs have continuously achieved the deadline, again the algorithm will shift to

EDF algorithm considering that overload condition that overloaded condition had been disappeared.

During underload condition, EDF algorithm is used for reducing execution time and during overloaded

condition ACO based scheduling algorithm is used for achieving better performance. By this way, adaptive

algorithm has taken advantage of both algorithms and overcome their limitations.

Copyright © 2019 IJEIR, All right reserved

206

International Journal of Engineering Innovation & Research

Volume 8, Issue 5, ISSN: 2277 – 5668

IV. PROPOSE ALGORITHM

We modified the heuristic value and switching criterion of Kotecha’s algorithm.

A. Heuristic Value

The heuristic value ηi can be calculated by equation (2). This value means the degree of urgency and depend on

the deadline of task. However the degree of urgency can be calculated more exactly by the laxity time of task. In

our algorithm, the heuristic value ηi is determined by equation (7).

𝜂𝑖 =
𝐾

𝐿𝑖−𝑡
 (7)

Here,

Li is laxity time of ith node.

B. Switching Criterion

In Kotecha’s algorithm, the switching criterion is depend on the result of executed jobs, in this theory during

underload condition, EDF algorithm is used for reducing execution time and during overloaded condition ACO

based scheduling algorithm is used for achieving better performance. However, the switching criterion is not clear

and it is difficult to identify system’s condition. Moreover, when a task-set has a large numbers of tasks, the

switching criterion will occur frequent switching bring unnecessary overhead of computation.

Therefore, we need more general switching criterion. We purpose two switching criterion depend on task

schedulability analysis: Utilization Analysis and Response Time Analysis.

1. Utilization Base Analysis

We assume a task set τ of n periodic tasks to be scheduled on m identical processors. Each task τi = (Ci, Di) is

characterized by a worst-case computation time Ci, a relative deadline Di. We will assume every task having

constrained deadline. Deadline is equal to the corresponding period. The utilization of a task is defined as 𝑈𝑖 =
𝐶𝑖

𝐷𝑖
,

Let Umax be the largest utilization among all tasks. J. Goossens, S. Funk, and S. Baruah [15] examined that a system

of independent periodic tasks can be scheduled successfully on m processors by EDF scheduling if it satisfies the

equation (8) as follows:

∑ 𝑈𝑖 ≤ 𝑚(1 − 𝑈𝑚𝑎𝑥) + 𝑈𝑚𝑎𝑥𝜏𝑖∈𝜏 (8)

We propose a new switching criterion depend on (8). If the equation (8) is satisfied, tasks are executed according

to EDF algorithm. Otherwise, it will be identified as overloaded condition and the algorithm will switch to ACO

based algorithm. The scheduler will be invoked at the arrival time of new task and the completed time of a task.

By this way before a new task arrival, the total utilization is relative fixed. Therefore, algorithm will not frequent

switching.

2. Response Base Time Analysis

Response Time Analysis (RTA) is an effective technique that has been widely used to derive schedulability

tests and properties for various different models of task systems. Bertogna et al. [16] examined that an upper

bound on the response time of a task τk in an EDF-scheduled multiprocessor system can be derived by the fixed

Copyright © 2019 IJEIR, All right reserved

207

International Journal of Engineering Innovation & Research

Volume 8, Issue 5, ISSN: 2277 – 5668

point iteration on the value 𝑅𝑘 of the following equation (9), starting with 𝑅𝑘 = 𝐶𝑘:

𝑅𝑘 ← 𝐶𝑘 + ⌊
1

𝑚
∑ 𝐼𝑘

𝑖 (𝑅𝑘)𝑖≠𝑘 ⌋ (9)

Where,

𝐼𝑘
𝑖 is interference of task τi on task τk

𝑅𝑘 is response time of task τk

𝐶𝑘 is worst-case computation time of task τk

Bertogna et al. also examined a task set τ is schedulable with EDF on a system with m identical processors if,

for all tasks are satisfies the equation (10) as follows

𝐷𝑘 − 𝑅𝑘 ≥ 0 (10)

We propose a new switching criterion depend on equation (10). If the equation (10) is satisfied, tasks are

executed according to EDF algorithm. Otherwise, it will be identified as overloaded condition and the algorithm

will switch to ACO based algorithm. The scheduler will star-up when a task arrival or completed. By this way

before a new task arrival, the value of each task’s response time is relative fixed. Therefore, algorithm will not

frequent switching.

V. EVALUATION

We have implemented our algorithm & Kotecha’s algorithm and have run simulations to accumulate empirical

data. We have considered periodic tasks for taking the results. For periodic tasks, load of the system can be defined

as summation of ratio of executable time and period of each task. For taking result at each load value, we have

generated 200 task sets each one containing 3 to 9 tasks. The results for 7 different values of load are taken (0.8

≤ load ≤ 2.0) and tested on more than 35,000 tasks.

The system is said to be overloaded when even a clairvoyant scheduler cannot feasibly schedule the tasks

offered to the scheduler. A reasonable way to measure the performance of a scheduling algorithm during an

overload is by the amount of work the scheduler can feasibly schedule according to the algorithm. The larger this

amount the better the algorithm. Because of this, we have considered following two as our main performance

criterion:

1. In real time systems, deadline meeting is most important and we are interested in finding whether the task is

meeting the deadline. Therefore the most appropriate performance metric is the Success Ratio and defined as

equation (11).

𝑆𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐽𝑜𝑏𝑠 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑓𝑢𝑙𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐽𝑜𝑏𝑠 𝑎𝑟𝑟𝑖𝑣𝑒𝑑
 (11)

2. In real time systems, new task will occur any time. We count the context switch (i.e., the time need to save the

status of the task being preempted and to load the preempting task) as overhead of each algorithm.

Copyright © 2019 IJEIR, All right reserved

208

International Journal of Engineering Innovation & Research

Volume 8, Issue 5, ISSN: 2277 – 5668

Fig. 2. Success ratio of jobs (Processors = 2). Fig. 3. Context Switch (Processors = 2).

Figure 2 and Figure 3 shown the results obtained in terms of SR and context switch by each algorithm when

number of processors are 2. The results are taken from underload condition (load ≥ 0.8) to highly overload

condition (load ≤ 2). Fig. 2 shows the results of success ratio achieved by the two proposed algorithms and

Kotecha’s algorithm. We can observe that the proposed algorithm have a same performance with Kotecha’s

algorithm. However, we find that proposed algorithm is definitely more than 3% and 8% when load values are

1.0 and 1.8. Fig. 3 shows the results of context switch achieved by the two proposed algorithm and Kotecha’s

algorithm. It observed that switching criterion depends on utilization analysis algorithm is occurred context switch

fewer than Kotecha’s algorithm during overloaded condition. Moreover, we find that switching criterion depend

on response time analysis algorithm is occurred context switch fewer than Kotecha’s algorithm when load from

1.0 to 1.6. The results remain consistent when we increase the number of the processors.

Fig. 4. Success ratio of jobs (Processors = 8). Fig. 5. Context Switch (Processors = 8).

Figure 4 and Figure 5 demonstrates the same when numbers of processors are 8.

VI. CONCLUSIONS

The algorithm discussed in this paper is for scheduling of soft real time system with multiprocessor environment

and preemptive task sets. The algorithm is simulated with periodic task sets; results are obtained and compared

with Kotecha’s algorithm.

The proposed algorithm works well in underload or overloaded condition. During underload condition, the

success ratio and context switch of proposed algorithm is almost same as Kotecha’s algorithm and during

overloaded condition; it performance better than Kotecha’s algorithm. Especially, the switching criterion depends

on utilization analysis algorithm.

Copyright © 2019 IJEIR, All right reserved

209

International Journal of Engineering Innovation & Research

Volume 8, Issue 5, ISSN: 2277 – 5668

The algorithm can switch automatically between EDF algorithm and ACO based scheduling algorithm depend

on utilization analysis or response time analysis. Therefore, the proposed algorithm is dynamic, during simulation

only periodic tasks are considered but it can schedule aperiodic tasks also. The algorithm can work with available

number of processors.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Number JP17K00085.

REFERENCES

[1] K. Ramamritham, J. A. Stankovik, “Scheduling algorithms and operating support for real-time systems,” Proc. IEEE, 1994, pp. 56-76.

[2] C. L. Liu, L. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environment,” Journal of ACM. Vol. 20, 1973,

pp. 46-61.
[3] N.C. Audsley, Deadline Monotonic Scheduling, YCS 146, Dept. of Comp. Sci., Univ. of York. 1990.

[4] K. Ramamritham, J.A. Stankovik, P. F. Shiah, “Efficient scheduling algorithms for real time multiprocessor systems,” IEEE Transactions

on Parallel and Distributed Systems, vol. 1, 1990, pp. 184-194.
[5] M. Dertouzos, K. Ogata, “Control robotics: The procedural control of physical process,” Proc. IFIP Congress, 1974, pp. 807-813.

[6] A. Mok, Fundamental Design Problems of Distributed Systems for the Hard-Real-Time Environment, Ph.d. thesis, MIT, Cambridge,

Massachusetts, 1983.
[7] G. Saini, “Application of Fuzzy logic to Real-time scheduling,” Real-Time Conference, 14th IEEE-NPSS., 2005, pp. 113-116.

[8] M. Dorigo, G. Caro, The Ant Colony Optimization Metaheuristic in D. Corne, M. Dorigo and F. Glover (eds), New Ideas in Optimization,

McGraw Hill, 1999.
[9] V. Ramos, F. Muge, P. Pina, “Self-organized data and image retrieval as a consequence of inter-dynamic synergistic relationships in

artificial ant colonies,” Conference on Hybrid Intelligent System, 2002.

[10] S. N. Mirabedini, H. Mina, S. H. Iranmanesh, “A new optimization method for scheduling with ACO and GA”, Int. J. Fuzzy Computation
and Modelling, Vol. 1, 2014, pp. 169-193.

[11] G. R. Reddy, Ramachandru, V. Kumars, “ACO Algorithm for Process Planning and Scheduling”, Open Journal of Technology &
Engineering Disciplines, Vol. 2, 2016, pp. 154~165.

[12] K. Kotecha, A. Shah, “Scheduling Algorithm for Real-Time Operating Systems using ACO,” Intelligence and Communication

Networks, 2010, pp. 617–621.

[13] G. Koren, D. Shasha, Dover, “An optimal on-line scheduling algorithm for overloaded real-time systems,” SIAM Journal of Computing,
vol. 24, 1995, pp. 318-339.

[14] M. Bertogna, M. Cirinei, “Response-time analysis for globally scheduled symmetric multiprocessor platforms,” 28th IEEE International
Real-Time Systems Symposium, 2007, pp. 149-160.

[15] J. Goossens, S. Funk, S. Baruah, “Priority-Driven Scheduling of Periodic Task Systems on Multiprocessors,” Real Time Systems, vol.

25, 2003, pp. 187-205.
[16] A. Shah, K.Kotecha, D. Shah, “Adaptive scheduling algorithm for real-time distributed systems,” in Biologically-Inspired Techniques

for Knowledge Discovery and Data Mining, IGI global, 2014.

AUTHOR’S PROFILE

Myungryun Yoo

Received B.E. from Andong National University, Korea in 1994, M.S. from Pohang University of Science & Technology,

Korea in 1996 and Ph.D. degree from Graduate School of Information, Production & Systems, Waseda University, Japan
in 2006. She joined Musashi Institute of Technology in 2006. She is now a professor of Tokyo City University. Her research

field is Real-Time System, Scheduling, Multimedia System, etc.

Takanori Yokoyama

Received his B.E. degree, M.E. degree, and Dr. degree in information science from Tohoku University in 1981, 1983, and

2002 respectively. He joined Hitachi, Ltd. in 1983. He joined Musashi Institute of Technology in 2004. He is now a

professor of Tokyo City University. His research interest includes embedded systems, distributed systems and software
engineering. He is a member of IEEE, ACM, IPSJ and IEICE.

https://ieeexplore.ieee.org/author/38163481000

