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Abstract - There exist many numerical methods forsolving
differential equations. They differ in accuracy,performance
and applicability. In this paper, we derive new numerical
schemeswhich depend on type M of B-splines Galerkin
method takes withweight function from type M-1 of B-
splines, where M is integer number, for solving the modified
equal width (MEW) wave equation,compared with analytic
solution can be made and we investigate a linear stability
analysiswhich is based on a Fourier (Von Neumann) method.
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l. INTRODUCTION

Consider the (MEW) equation having normalized form [5]
U, +3U%U, —uU,, = 0a<x <b, (1.1a)

subject to the following boundary conditions

U(at)=0, U(b,t) =0,

Uc/(at)=0, U,(bt)=0

Uy, (a,t) =U,(b,t) =0,t>0.(1.1b)

and the initial condition U(x,0) =f(x), (1.1¢)

the parameteruis a positive constant and f(x) islocalized
disturbance inside interval [a, b] with physical boundary
conditions U — 0 as x— . The MEW equation (1.1a)
has a solitary wave solution [8] of the form

U(x,t) = Tsech(¥[x — xy — Utl), (1.2a)

where the wave velocity v :T? and K2 =1/u. This

equation represents a single solitary wave of amplitude T,
initially centered on x,. The initial condition is taken as
U(x,0) = Tsech(X[x —x,]), (1.2b)

these solitary waves may have either a positive or a
negative  magnitude but all have positive velocities
proportional to the square of their amplitude and, like the
regularized long wave(RLW) equation, all have the same
wave number X = ./(1/w), thus all solitary waves have
the same width. There is no forbidden range of positive
velocities as occurs with the RLW equation. With these
boundary conditions solutions of the MEW equation (1.1a)

satisfy three invariant conditions given as:-
+o0
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I; = f Utdx.

The MEW equation based upon the equal width wave
equation([2],[3]) which was suggested by[5] is used as a
model partial differential equation for the simulation of
one-dimensional wave propagation in nonlinear media
with dispersion processes. This equation is related with the
modified regularized long wave (MRLW) equation [1] and
modified Korteweg-de Vries (MKdV) equation [4]. All the
modified equations are nonlinear wave equations with
cubic nonlinearities and all of them have solitary wave
solutions, which are wave packets or pulses. These waves
propagate in non-linear media by keeping wave forms and
velocity even after interaction occurs.

(1.3)

I1. APPROXIMATION OF THE MEW EQUATION
BY B-SPLINE GALERKIN METHODS WITH
DIFFERENT WEIGHT FUNCTION

2.1 Quadratic B-Spline Galerkin Method with Linear
Weight Function

The quadratic B-splineB,,(x)and its principle
derivative which is definedby[7]vanishes outside the
interval [x,,_1, x,,4+2],and takesthe weight function W; (x)

linear B-spline.By using the local coordinate
transformation [9]
hn =x — x,, 0<n<1i,

the linear B-spline shape functions for the typical element
[Xm» Xm+1] define by
Am=1_r" Am+1=771

then, the weak form of (1.1a) is given by:
b
fwl(ut + 30U, — Uy )dx = 0
a

S0,

1
3.2 u .
Wl(Ut +EU U'l —FU,W)dn =0
0
integrating by parts

1
J-(Wl Ut + AW]-UT] + 6W11']U7]t)dn = 6W1Ur]t I%)
0
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(2.1)
substituting approximation
m+1
Uy = > By, 22)
j=m-1
into (2.1), we obtain
m+1 1
> ([ A+ 648 - 64,8 1y
j=m-1 0
m+1
+ Z (AfABdn)y] —0,
j=m-1
which can be written in matrlx form as follows:
[X¢ +8(Y — Ry +2Qfve =0,
where  ¥¢ = (Vm—1, V> Vms1). are the  element
parameters. The element matrices X7, Y7, Q; and R;; are

rectangular 2 x 3are given by the following integrals:
1

38 1
x¢ = | aB
z f M=1zl1 8 3k
0
1
- 10 -1
v=[aga=[] 0 7
0
X 1
: 2 1 1
iefzfAide"=§[—1 ~1 2k
0
a_[2 -2 0
Ry =as =[5 5 |

where sufficesi takes only the values 1 and 2 and j takes
values m-1,m and m+1 for the typical element [x,,, X, +1]-
A lumped value of A can be defined as

A= - et + 2 + Ya)?

assembling all contributions from all element, we get the

following matrix equation:

[X7 + 8(Y; — R)]y + AQ;y = 0.(2.3)

where ¥ = (y_1,Y0, Y1, -, ¥y)T is a global element

parameter. The matrices X;,Y;and Q,are rectangular,

penta-diagonal and row m of each has the following form:
= 1(1,11,11,1,0),

Yl = (_1 11' 11 _11 O)y
AQl = (_/11,_/11 - 2/12, 2&1 + /12,).2,0),
where,

3
Al = E(ym—Z + 2ym—l + Vm)21
3
/12 = E(ym—l + Zym + ym+1)2’
using the Crank-Nicholson approach y = %(y" + 1)

l_yn )

" in (2.3) we

obtain the following (N + 1) X (N + 2) matrix system
[X1 +8(Y, = R) +25Q,]y™*! = [X; + 8(Y; — Ry) —

AN2Q01yn, (2.4)

and the forward finite difference y* =

to make the matrix equation be square we applying the
boundary conditions (1.1b) to the system (2.3).
Remark 1: The initial vector of parameter y° =
3, v?, ..., ¥Y) must be determined to iterate system (2.4),
the approximation

N

Un(6,6) = ) Ay (0) 25)
i=0

is rewritten over the interval [a,b] at time t=0 as
follows:

N
Uy(6,0) = ) Ay @,
m=0

U(x,0) are required to satisfy the following relations at
the mesh points x,, :
Uy(x,,,0) = U(x,,,0), m=0,1,...N
U,N(XOJO) = U’(xNJO) =0 )

v (%0,0) = U"(xy,0) = 0
By this remark, the initial vector of parameter y° is then
determined asdetermined as

2 -2 0 0
11 l{y‘ol | |[ U(x) ]|
. Yo :
| S Sl bl es
I 1 1 ||V1V 1l vyl
l 2 2J 17 U(xy)

to solve this system, first reduce it to tri-diagonal matrix
by eliminating the first equation from them and then
apply Thomas algorithm[6].

2.2 Cubic B-Spline GalerkinMethod with Quadratic
Weight Function

The cubic B-splineC,, (x) and its two principle derivatives
which are defined by[7]vanishes outside the interval
[Xm—2, Xm+2],and take weight function W,(x) quadratic
B-spline.By using the local coordinate transformation,the
quadratic B-spline shape functions for the typical element
[%m» Xm+1] defined by:-

Bm—l = (1 - 77)2,

B, =1+ 2n—2n?,

Bm+1 = 772:

then,the weak form of (1.1a) is:

f(w2 Uy + AW, Uy, + 8W,, Uy )dn = 8W, Uy, 5 2.7

substituting approximation
m+2

> 6,ma, .
jg=m—1
into integral equation (2.8), we get,
m+2 1

(] B G+ BB}, G )dn — 61,6, 1o
0

UN (77' t) = (28)

jg=‘m—1
m+2

+§:af%MM) 0

jg=m-1
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which can be written in matrix form as follows:

[ igjs T (Y igjg Rlesjs)]a.e + AQL?BJ'SO-E =0.

where 6° = (0yy_1, O, Oms1,0msz)’  are the element
parameters. The element matrices X/
Rf . are rectangular 3 X 4

igjs
integrals:

igjg’ 18]8'Q18]8
given by the foIIowmg

10 71 38 1
Xii szigq'g dn =20 19 221 221 19|,
1 38 71 10

0
: 3 5 -7 -1
Yiesis = fBistg dn ZE -2 2 2 -2,
0 -1 -7 5 3
: ([-6 -7 12 1
i88j8 = J-Bisq'g dn = 10 13 —41 41 13|,
0 -1 =12 7 6
1 0 -1 0
— D
Rl?sjs - BiSng b =311 -1 -1 1
0 -1 0 1

where sufficesig takes only the values 1,2,3 and jg takes
values m-1,mm+1 and m+2, for the typical element
[%m, X +1]- A lumped value for A is defined by

3
A=
by assembling all contributions from all element, we get
the following matrix equation:
(X, + 8(Y, —Ry)]o" + 1Q,0 = 0. (2.9
where ¢ = (0_1, 0,01, ...,0y,0y41)" is a global element
parameter. The matrices X,,Y, andQ,are rectangular,
septa-diagonal and row of each has the following form:

X, = =(1,57,302,302,57,1,0),
60
=1(-1,-9,10,10,-9, -1,0),

(Gm—l + 50-m + 50m+1 + Um+2)21

—122; — 134,72, — 414, — 613,61,
+ 412, — 723,134, + 1243, A3, 0),

1
AQZ = 1_0 (_}lll

where,
3
/11 = E(Um—Z + Sam—l + SUm + O-m+1)21
3
AZ = E(Jm—l + 5O-m + 50m+1 + O-m+2)21
3
/13 = E(O—m + 56m+1 + 56m+2 + O-m+3)21
using the Crank-Nicholson approach and the forward finite
difference in (2.9)we obtain (N + 2) x (N + 3) matrix
system
[X; + 8(Y2 — Ry) + 22£Q,]0™ ™ = [X, + 8(Y, — R,) —
A2 PQ2on.  (2.10)
Applying the boundary conditions to system (2.9) we

make the matrix equation square.By Remark 1, the initial
vector of parameter ¢ is then determined as

3 0 -3 0
[1 4 1 “ (;‘gl ] [U(xo)}
‘ - i zoi | : I’ (2.11)
O—N U
l RO | P B b

to solve this matrix equation, first reduce it to tri-diagonal
form by eliminating the first and last equations and then
apply the Thomas algorithm.
2.3 Quartic B-Spline GalerkinMethod with Cubic
Weight Function
The quartic B-splineD,,(x) and its two principle
derivatives which are defined in [7] vanishes outside the
interval [x,,_,, x,,43].and take weight function W;(x)
cubic B-spline.By using the local coordinate
transformation, we give the cubic  B-spline shape
functions for the typical element [x,,, X, +1] in
Cn1=(Q1- T])3!

Cn=1+31—-m+31-1m?%-3(1-n)d
Cmi1 = 1430+ 307 =397,
Cntz = 113 .
then, the weak form of (1.1a) is:

1

f (W3 Uy + AW U, + 8W3, Uy, )dn = 8WsUy, 13,

0

(2.12)
substituting approximation
m+2
UL = D D, (py, (O, (213)
jo=m-—2
into integral equation (2.12), we get,

m+2

1
I« f Ciy Dy, +6C,D))dn — 66,1}, 5155

jo=m-2
m+2

+ Yy a f i D) o5, = 0,

jo=m-—2
which can be written in matrlx form as follows:

[Xie9}9 +8(Y igjo 1919)]'0 + AQ19J9P =0,

where ¢ = (Pm_z, Pm—1, Pms Pm+1,Pm+2)’  are  the

element parameters. The element matrices X ;, Yoo, RY, o

and Q;;, are rectangular 4 x 5 given by the following
integraIS'
19]9 J- ig ]9
35 594 892 158 1
1 1211 4794 10196 3190 89
280|189 3190 10196 4794 211
1 158 892 594 35

1

Yo ZJ- io Dy o dn
0
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10 61 -33 -37 -1
_11 9 141 33 -165 -18
5(-18 -165 33 141 9 [
-1 -37 =33 61 10
4 12 -12 -4 0
16 44 —60 —4 4
Rijo = Cul) b =17y 4 6o 44 16|
0 —4 —12 12 4
1
Qie9j9=f {9 19 dn
0
-20 -109 69 59 1
_1|-129 -1059 255 873 60
35| -60 —873 —255 1059 129
-1 -59 -69 109 20

where suffices igtakes only the values 1,2,3,4 and jytakes
values m-2, m-1,m, m+1 and m+2 for the typical element
[%m, Xm+1]- A lumped value defined as

= 2 Pz + 12pm—1 + 2205 + 12D 41 + Prs2)’.
By assembling all contributions from all elementwe get
the following matrix equation:
[X3 +8(Y3 — R3)]p"+ 1 Q3p = 0. (2.14)
where p = (p_3,p_1, -, Pn> Pn+1)" IS a global element
parameter. The matrices X3,Y; and A Q5 are rectangular,
nonic-diagonal and row of each has the following form:

X3 = % (1,247,4293,15619,15619,4293,247,1,0),

¥; = £ (~1,-55,—189,245,245,~189,-55,~1,0),
1

AQs = 55(~h, =592 — 60z, ~694, — 8731,
—12923,1094; — 2554, — 105943
—2024,204; + 10594, + 25515 — 1094,,
1291, + 87315 + 691,, 6015 + 592,
A4,0)

where,

3

Al = 4h (,Dm—g + 12pm—Z + 22pm—l + 12pm + pm+1)21
3

Ay = 4h (pm—z +12pp 1 + 220, + 12pp 41 + pm+2)21
3

2-3 = E(pm—l + 12pm + 22pm+l + 12pm+2 + pm+3)21

A4 = 5 (b + 12Pm 11+ 22Pmsz + 12043 + Prnsa)’,
using the Crank-Nicholson approachfor pand for p' the
forward finite difference in (2.14) we obtain (N+3)x
(N + 4) matrix system

[X3 + 8(Y; — R3) + 4 Q3]Pn+1 [X3 +8(Y; — R3) —
ANE2 Q3pn, (2.15)
by applying the boundary conditions to (2.14) we make
the matrix equation square. By Remark 1, the initial vector
of parameter p° is then determined as

12 —12 —12 12 1% 1 0
4 12 -12 4 p01|[0]|
1 11 11 1 y
po | Ulxo |
1 11 o1 1]
4 12 —12 4| AV lu(x’v)‘
12 -12 -12 121loRd
(2.16)

to solve this system, first reduce it to four-diagonal form
by eliminating the first pair and last equations and then
apply Thomas algorithm.

2.4 Quintic B-Spline GalerkinMethod with Quartic
Weight Function

The quintic B-splineE,,(x) and its two principle
derivatives which are defined in [7] vanishes outside the
interval [x,,_3,x,43],.and take weight function W,(x)
quartic  B-spline.By using the local coordinate
transformation, we give the quartic B-spline shape
functions for the typical element [x,,, x,,, +1] In

Dm—2 = (1 - Tl)4,

Dpoy = (@2—-m)*—-501 -t

D, =@-n*-52-m*+101—-n*
D1 = (1 4+1)* —5n*,

Dm+2 = n4v

then, the weak form of (1.1a) is:
1

f [Wa U, + AW,U, + 8W,, Uy, ddn = 8W, Uy, §
0

(2.17)

substituting approximation

m+3

U= D B,md,0  (218)
j1o=m-2
into integral equation (2.17), we get,
m+3
[(f Dy Ejyy + 8D;,, By )dn — 8Dy, B 1519 i10
jio=m-2
m+3
+ Z (A_[Dlw Jlodn) j10
j1o=m—2

which can be written in matrix form as follows:
[Xieloho + 6( i10j10 Rleloho)]ﬁ'e + AQflohoﬁe =0.
where 9¢ = (9p—2,9m—1,9m, Om+1,9m+2,Im43)” are the

element parameters. The element matrices
e e e e
X{ oj10 Yirojror Rivojro @Nd Qf,j,, @re rectangular (5 x 6)

given by the following integrals:
1

e —
le]lo _f i10 110 dn
0

126 4747 15962 8772 632 1
[1931 89797 376002 281662 36467 381 ]
= 1260 2601 155637 839682 839682 155637 2601}
381 36467 281662 376002 89797 1931
l 1 632 8772 15962 4747 126 J
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dn

110 } 10

35 559 298 —734 —157 -1
1 | 176 4024 5104 —6272 -—-2944 -88
=E —122 -—-1482 1604 1604 —1482 —-122
—88 —2944 -—-6272 5104 4024 176
-1 —157 734 298 559 35
Rle10110 = (Dllo }10) |0

[ 5 50 0 -50 -5 0]

[55 545 —50 —-550 -5 5|

=|55 495 —550 —550 495 55|

l5 -5 —550 —50 545 55J

0 -5 =50 0 50 5

1

e —
inho _f i10 ]10 d?’)

0

=70 —-1051 —460 1330 250 1
[—1121 —21689 -20186 31550 11195 251]
= m| —1581 —41415 -—-67434 67434 41415 1581}
—-251 -—-11195 -31550 20186 21689 1121
l -1 —250 —1330 460 1051 70 J

where suffices iy, takes only the values 1,2,3,4,5 and j,

takes values m-2, m-1,m, m+1, m+2 and m+3 for the

typical element [x,,, x,,, +1]. A lumped value is defined as
= = Oz + 2601 + 660y, + 260,41 + Ini2)?,

by assembling all contributions from all elementwe get the

following matrix equation:

(X, +8(Y, — RO +10Q,09 = (2.19)

where 9 = (9_5,9_1, .., 9y, 9Iv+1,Iv42)T is a global

element parameter. The matrices X,Y,and 1Q, are

rectangular, 11-diagonal and row of each has the following

form:

X, = ——(1,1013,47840, 455192, 13103540,

13103540,455192,47840,1013,1,0)
1
=1z (—1,-245,-3800,—7280,11326,11326,
—7280, —3800, —245,-1,0),

1Q, _ﬁ( A1, —2504; — 2514,, 13304,

—111951, — 158143, 4061, — 315504, — 414151,
—11214,,10514, + 201861, — 674344; — 216891,
—705, 704, + 216891, + 674344, — 201861,
—105145, 11214, + 414151; + 315504,
+13304s, 158115 + 111954, + 133045, 2514,
+25045, A5, 0)
where,
N = (I—s + 2703 + 920, + 920, +
279m+1+9m+2)2,
Ny = (Im—z + 270y + 920y, + 920,41 +
279m+2+9m+3)2,
A3 = (It + 270y + 920,41 + 920,42 +
279m+3+9m+4)2,

Ay = = O + 27041 + 920,40 + 920,43 +

270,14 + Omss)?,

A5 = = Ot + 27042 + 92043 + 920,44 +
279,15 + Omse)?,

using the Crank-Nicholson approach and the forward finite
difference in (2.19) we obtain (N+4)x (N +5) matrix
system

[Xs +8(Ys —Ry) +2¢
AN L2 949n, (2.20)

by applying the boundary conditions to (2.20) we make
the matrix equation square. By Remark 1, the initial vector
of parameter 9 is then determined as

]19”+1 [X4, + 6(Y4 - R4) -

o -
[20 40 120 40 20 115
|5 50 0 -50 -5 [| =1
1 26 66 26 1 9 U(x0
| 1 26 66 26 1 | 95 U(xN)
| 5 50 0 -50 —5J 991
20 40 -120 40 20d|g0 |
(2.21)

to solve this system, first reduce it to penta-diagonal form
by eliminating the first and last pair of equations and then
apply Thomas algorithm.

2.5 Sextic B-Spline Galerkin Method with Quintic
Weight Function

The sextic B-splineF,, (x) and its two principle derivatives
which are defined in [7] vanishes outside the interval
(% —3, Xm +4],and take weight function Ws(x) quintic B-
spline. By using the local coordinate transformation, we
give the quintic B-spline shape functions for the typical
element [x,,, Xy 41] IN

Em—2 = (1 - Tl)sx

Em_1=(2-m)°-6(1-1)°

En =@-m)°-62-1°+15(1-n)°,

Ems1 = (4=1)° =63 —n)° +15(2 —n)° -

20(1 —n)®,

Emsz = (5—m)°—6(4—n)°+153 —n)° -

202 =n)° +15(1 —n)®,

Em+2 = n51

then the weak form of (1.1a) is:

f[w5 Up + AWsU, + 8Ws, Uy, )dn = 8WsU,, 1§ (2.22)

Substituting approximation
m+3

PR ROLNO!

j11=m=3
into integral equation (2.22), we get,

Uy, t) = (2.23)
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m+3 1

Z [(f i11 111 +6El11 ]11)dT7 6Elll 1/11 0] Jj11

ji1=m-3 0
m+3

+ Z (Af i11 111dn) j11

jo=m—=3
which can be written in matrlx form as follows:

e e e e e _—
[Xlu}u +6(Y] i11j11 R111}11)]T +AQ1‘11]‘11T =0.

— T
where ¢ = (Tm—S'Tm—Z'Tm—lva'Tm+1,Tm+2va+3) are
the element parameters. The element matrices

e e e e
X{ 1 Vi Riyyjyy @nd QF,;,, are rectangular (6 x 7)

given by the following integrals:
1

1
Xlen]n :J- J11 }11 dTI 5544
0

462 36059 244205 304250 76900 2503 1
16171 1537535 11886590 17975130 6128395 375559 1580
51014 5748218 52521800 96528940 42334750 3704026 25812
25812 3704026 42334750 96528940 52521800 5748218 51014
1580 375559 6128395 17975130 11886590 1537535 16171
1 2503 76900 304250 244205 36959 462
1
Ylil]llzf i11 111 dT]
0
126 4621 11215 —7190
1805 83245 274990 — 87150
_1| 670 65170 397840 94340
421—-2220 —116950 —438850 94340
—380 —35455 -237055 —87150
-1 —631 —8140 —7190
—8140 —631 -1
—237055 —35455 —380
—438850 —116950 —2220
397840 65170 670
274990 83245 1805
11215 4621 126
e —
R'11111 (E'llFlel )lO_
6 150 240 —240 —-150 -6 0
156 3894 6090 —6480 —-3660 —6 6
396 9744 11940 -—22080 —-3660 3504 156
156 3504 —-3660 —22080 11940 9744 396
[6 —6 —3660 —6480 6090 3894 156J
0 —6 —150 —240 240 150 6
1
. , 1
i11j11 Ei11FJ"j11dn=4_62
0
—252 —8861 —20445 14060 14480 1017 1
9113  —388303 1161290 486520 950545 120623 1018
—29558 —-1529148 -5905750 861980 5530290 1056688 15498
—15498 -1056688 -—5530290 -—-861980 5905750 1529148 29558
-1018 —120623 —950545 —486520 1161290 388303 9113
-1 -1017 —14480 —14060 20445 8861 252

where suffices i;; takes only the values 1,2,3,4,5,6 and
J1o takes values m-3, m-2, m-1,m, m+1 and m+2 for the
typical element [x,,, x,,, +1]- A lumped value is defined as

A= (Tng + 57Ty + 3027,y + 3027, +

57‘[m+1 + Tm+2)2'

By assembling all contributions from all element we get
the following matrix equation:

[Xs +8(Ys —R)]It +A1Qs7t =0, (2.24)

where 7 = (T_3,T_5,T_1, .., Ty, Tv+1, Tn42) | 1S @ global
element parameter. The matrices Xg,Ysand A Qs are
rectangular, nonic-diagonal and row of each has the
following form:

X5 =——(1,4083,478271,10187685, 66318474,

5544

162512286,162512286,66318474,10187685,478271,

4083, 1,0)
Y = 4—12(—1, —~1011, —45815, —360525, —447810,
855162,855162, —447810, —360525, —45815, —1011,
2Qs = 7oz (—A1,~10174; — 10181, ~144801,

—1206231, — 1549845, —140604; — 95054524,
—10566881; — 295584,,204451;, — 4865201,
—55302901; — 15291484, — 911341,
88614, + 11612904, — 86198045 — 59057504,
—38830315 — 2521,,2521; + 3883031, + 59057501,
+8619804, — 116129045 — 886144,911341,
+15291484; + 55302904, + 48652045
—204452¢,295584; + 10566884, + 95054545
+ 1406044,154984, + 12062314
+ 1448044,101845 + 101724, 44, 0)
where,

A1 = = (Tog + 58T, + 3597,y + 604, +
3591m+1+58rm+2+1m+3)2,

Ay = o (Tm—g + 58T,y + 3597, + 6047, +
3591m+2+58rm+3+1m+4)2,

A3 = = (Tm—y + 58T,y + 359,41 + 6047, +
3591m+3+58rm+4+1m+5)2,

A= %(rm + 587,11 + 3597, 4, + 6047, 43 +
359rm+4+58rm+5+1m+6)2,

A5 = 2 (Tyar + 58Ty4z + 359Ty3 + 604744 +
359rm+5+58wm+6+1m+7)2,

A = o (Tyaz + 58BT3 + 359Ty 04 + 604745 +

359rm+6+58tm+7+rm+8)2,

using the Crank-Nicholson approach for t and the forward
finite difference for 7" in (2.24) obtain (N+5)x (N + 6)
matrix system
[Xs + 8(Ys —
ANL2Q057n,

Zs) —
(2.25)

Zs) + 2105 |t = [Xs + 8(Ys —

Copyright © 2013 IJEIR, All right reserved
345

-1,0)



International Journal of Engineering Innovation & Research

Volume 2, Issue 4, ISSN: 2277 — 5668

by applying the boundary conditions to (2.24) we make
the matrix equation square. By Remark 1, the initial vector
of parameterz? is then determined as

30 270 -300 -300 270 30

6 150 240 —240 -—150 —6

1 57 302 302 57 1
1 57 302 302 57 1
6 150 240 —240 —150 -6
30 270 =300 =300 270 30
-ng— r 0
ng 0
Tgl 0
8 U(xo)
P=| (2.26)
10 .
K e
TN+1 0
7742 0

to solve this system, first reduce |t to six-diagonal form by
eliminating the first three and last pair of equations and
then apply Thomas algorithm.

The numerical results of previous kinds of Galerkin B-
spline with different weight function are shown in Table
(1) and Figure (1).

I11. STABILITY ANALYSIS OF GALERKIN B-
SPLINE METHODS WITH DIFFERENT WEIGHT
FUNCTION

3.1 Stability of Quadratic B-Spline GalerkinMethod
with Linear B-Spline as a Weight Function

A typical member of the matrix system (2.4) can be
written in terms of the nodal parameters Vi8S

vyt + vyt + vyt vyt = vaymo +

V3Vm-1t V2Vm + V1¥m+1
where

vy==—6-
11+6+3/1At U4___6+1At

Substltutlon of y = Vige™" leads to

Vig{vie 2" + vye #h + v + v,eh} = v,e 2R

vie Ph 4 v, + v el

simplifying the above equation, we get

- A10—iB1o
18 C1o+iD1o !

where ,
AIO = %‘l‘ 6 -

/lAt + 6 31At

P8Y 4+ (1 + 22) cos(hB) +
=8+ ’16&) cos(2hp),

By = (-3 —2
%)sini?@hﬁ),

— 22 sin(hB) + (—5 + 8 —

29 cos(Zhﬁ)

288y cos(hpB) + (& —

Dyp = (12— 28 + ¥2) sin(hp) + (—5 + 8 +
25 cos(2hp),

after simplification, we obtain that | ¥;5 |°=1 and the
linearized numerical scheme for the MEW equation is
unconditionally stable.

3.2 Stability of Cubic B-Spline GalerkinMethod with
Quadratic B-Spline as a Weight Function

A typical member of the matrix system (2.10) can be
written in terms of the nodal parameters o, as

Loty + Lot + ;o2 + Lot + Lsot) + Lot

loom— + lsom 1 + Loy + 30,11 + Log o + Loy 3

where ,
1 1 AAt 57 9 25AAt
ll =———= -5 2 === - )
60 2 20 60 2 20
302 10 40AAt 302 40AAt
13 —+ — 6 - ,l4 = - + 6 + ’
60 2 20
57 9 251At 1 /1At
ls=>—-86 : 16=———6 =,
60 2 20 60 2 20

Substitution ofg”: = ¥/qe?™" | leads to
Vig{lie2h 4 e ™ + 15 + 1, 4 I5e2Ph
+ lge3Ph} =
Lie 2Bh 4 1e=#Bh 4 1, + 1,0t 4 [ @B 4 | 360,
simplifying the above equation, we get

o _ A11—iB11
Y - = . 1
19 A11+iB11
where ,
A =

(302 + 3006) cos (£) b+ (57 — 2708) cos (£) n +
(1 -308)cos (579) h,

0 36
B;; = (1201At) sm( ) h + (751At) sm( > )h

56
+ 31At sin (7) h

after simplification, we obtain that | ¥;9 | =1 and the
linearized numerical scheme for the MEW equation is
unconditionally stable.
3.3 Stability of Quartic B-Spline GalerkinMethod
with Cubic B-Spline as a Weight Function
The linearized form of proposed scheme (2.15) takes the
form
nypm 3 +nypn L 2 +ngpnt 1 +napptt 4+ nsppth +
Nepm's + Mo ppts + ngphth = ngop 3 + 07, +

NgOm—1 + M5Oy + NyOpy1 + N30 4p + N20p i3 +
n
N10m +4-
where
I S Ade 247 55 11924t
17280 5 70 "2 7 280 5 70
4293 189 1071 2A¢ 15619 | 245 12252A¢
‘n3 = — — — ,Tl4 = e 6 )
280 5 70 280 70
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15619 _ 245 12254¢ 4293 189 107124¢
ng = + 2B+ g = e — ,
280 5 70 280 5 20
= 247 55 11924t = L1 AAt
77280 s 70 ' 87 280 5 70

substitution ofp? = ¥,,e®™" leads to

V3{n e 38" + nye 2t + nye 1Pk 4 ny + ngeh +
n6eifh+n7e3ifh+n8ediffi=n8e— 3ifh+n7e— 2154+
nege P + ng + nyeh + nye?h 4 n,e3hh 4 n et
Simplifying the above equation, weget

y _ A12—iB1p
Y20 - C12+iD12 !
where ,
15619 . 245 1225 1At 19912 . 56
A = (Gt 5 8+ — ) + (5 + 56—
540, 5
o Jeos(Bh) + G = 576 -
9521 A¢ 248 56 11814t
= ) cos(2ph) + Geo ~ 28 Ycos(3ph) +
11 At
Ggg — 58 — 75)cos(4ph),
11326 . 434 2296048\ . 4046 134
Blz_(zso 5 0T T 70 )51n([5h)+(280 -5 8-

1190AAt70sin2ph+(246280-5458-1201At70)sin3ph
+(1280-158-AAt70)sin(4ph),

15619 245 12257At 19912 56
12= G T3 6775 ) G #5764
154 1At 4540 244 952 At
- Ycos(Bh) + (Geo ~ 5 6+ ) cos(2ph) +

(248280-5656+118./A#70)cos3Bh+(1280—156+AAt7
0)sin(4ph),

11326 434 2291At . 4046 134
D12 = (W+T6 +T)sm(ﬁh) + (%—?8 +
1190AAt. . 246 54 120AAt .
— sin(2ph) + Geo 358+ T)51n(3[3h) +
1 1 AALS .
(ﬁ - 56 + %)51n(4[3h).
after simplification, we obtain that | ¥, | =1 and the

linearized numerical scheme for the MEW equation is
unconditionally stable.

3.4 Stability of Quintic B-Spline GalerkinMethod
with Quartic B-Spline as a Weight Function
The linearized form of proposed scheme (2.20) takes the
form
GOty + @200t + 4305t + au 9t + gsOnth

+ qeOnth + G905 + agOnth

+ Gonts + Gr09nte =
@109m—-3 + G99m—2 + 4g9m_1 + 4790 + GeVpi1 +
@5m+2 T BaVm3 + 439m1a + G29mys + G10m 6.
where

1 1 A0t 1013 245 5012A¢
D=0 T4 252 ' 27 1260 14 252 '
47840 3800 14106 2A¢ _ 455192 _ 7280 ¢
37 1260 14 252 ' 47 1260 14

73626 1At
252
_ 13103540 | 11326 o _ 679564t 13103540
57 71260 14 252 ' 6™ " 1260
11326 67956 1At
6+ ,
14 252

455192 7280 73626 1At — 47840 3800
77 1260 14 252 P87 1260 14
14106 1At
252 '
_ 1013 245 5011At 1 1 1At
97 1260 14 252 0 D0 T 0 T 252"

the error in typical mode of amplitude ¥3;,
1971711 = }.}Tzlleiﬂmh'
substituting the above Fourier mode into linearized form

gives
sn+1

21 = 913 ﬁ%
the growth factor g5 has the form:

bie> PP + (by + by)(e*F" + e7*F7) +
13 = by €3 B + (by + by )(e* AR + e—4iFR) 4

(bs + by)(e*F" + 73Ry 4 (b, + by )(e?'Fh + e72FF) 4
(bs + by)(e3FR + e73BR) + (b, + by )(e?Fh 4 e~ 21FR) +

(bs + b ) (e + e 7Ry + (b,
(bs + b,)(e'Fr + e~1BR) + b

So that the magnitude of the growth factor |Y21 | <1, and
the linearized recurrence relation based on the present
scheme is unconditionally stable.

3.5 Stability of Sextic B-Spline GalerkinMethod with
Quintic B-Spline as a Weight Function

The linearized form of proposed scheme (2.25) takes the

form
+1 +1 +1 +1 +1
P1Tmos + PoTm s + P3Tmii + PaTy + pPsTyir +

n+1 n+1 n+1 n+1 n+1
PeTm2 T P7Tmi3 + PsTmia + PoTmis + ProTm+e T

n+1 + n+l _ n + n +
P11Tm+7 T P12Tm+8 = P12Tm-3 T P11Tm-2

n n n n n
P10Tm-1 T P9Tm T P8Tmi1 T P7Tms2 T PeTm3 T

n n n n n
PsTnrs T PaTmys T P3Tnre T P2Tm7 T P1Tm4s
where

_ 11, A _ 4083 1011 ,  20352At
PL=%m = w62’ P2 T 5w 162 '
_ 478271 45815 o 1506014A¢ _ 10187685
37 5544 42 162 47T 5544
360525 5 _ 2050851 7A¢
42 462 !
_ 66318474 _ 447810 , 7534626 AA¢ 162512286
P5 = "ssm 42 w62 ' P67 T osm
855162 o _ 5986134 1A¢
42 462 !
_ 162512286 855162 5 | 5986134 2A¢ 66318474
77 5544 42 462 P8 = 5sag
447810 7534626 AAt
8 + ,
42 462
_ 10187685 _ 360525 o | 20508512A¢ 478271
97 5544 42 462 1710 T pngy
45815 150601 1At
8 + ,
42 462
4083 1011 2035 AAt ! 1 AAt
P11 = 5m T w2 462 712 T 5544 42 462

the error in typical mode of amplitude Y5,

Pm = Ygzeiﬁmh'

substituting the above Fourier mode into linearized form
gives
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Ygz+1 = Y14 erlz
the growth factor g4 has the form:
by e 1 (b, + byy)(e*F" + e 75FM) 4
914 = G o€ B 1 (by, + by)(eSEh 1 o 5By 1
(b3 + byy ) (e* N + o741y + (B, + byo) (e3P + 72PNy
(bio + by ) (¥l 4+ o736y 4 (b + by) (e3P 4 o731M)

+ (bs + bg) (¥ + 272M) 1 (b, + bg) (" + e~#M) + b,

+(bg + by) (2P + 2211y + (b, + b)) (e + e M) + by

So that the magnitude of the growth factor |Y22 ‘ <1, and
the linearized recurrence relation based on the present
scheme is unconditionally stable.

IV. NUMERICAL EXAMPLE AND RESULTS

A numerical algorithm for the solutions of the MEW
equation should describes adequately the motion of a
single solitary wave and should exhibit the same
conservation laws as the differential equation. The
numerical algorithms set up in Section 2 is validated for
the MEW equation by following the motion of a single
solitary wave across the mesh. It is expected that Eq.(1.2a)
will represent not only the solitary wave solution for an
unbounded region but also the solitary wave solution for
bounded region of sufficient size. ThusEq.(1.2a) is used as
initial condition with range 0 < x < 80, space step
h = 0.1, time step At = 0.05, amplitude A = 0.25,u =
land x, = 30. The simulation is run to time ¢t = 20 and
the quantities I, I,, I; are calculated from the sums
N

11 = hz l]/n,
Jj=1

N
L=h ) U] +r(UI,
J=1

N
L=hY UM,
=1

where U/* and (U,); are mesh values of the numerical
solution for the simulation region 0 < x < xy and the
error norm L,and L., are recorded throughout where

Ly=u-uyl, =

and
L,=|uv-uy|, = m]aX|Uj —Uy|,

initial condition Eq. (1.1c) enables the integrals (1.3) to be
determined analytically as[8]

I 2T 2u¥,T?
T 2T 20T

_ _4r
K P K, 3

C = .
1 37 3%,

Table 1: Invariants and error norms for Galerkin B-
spline methods with different weight function

The I I, I3 L, L,
Methods

Quadratic 0.7854 | 0.1250 | 0.0052 1.9902e-015 5.8287e-016
with linear

Cubic with | 0.7854 | 0.1251 | 0.0052 9.3159¢e-004 2.0820e-004
Quadratic

Quartic 0.7854 | 0.1260 | 0.0052 3.5741e-005 8.6745e-006
with Cubic

Quintic 0.7854 | 0.1258 | 0.0052 1.0396e-005 2.7161e-006
with

Quartic

Sextic with | 0.7854 | 0.1257 | 0.0052 3.5916e-005 8.7144e-006
Quintic

Exact Solution

Numerical Solution | @

2 oasp--- ........ R .

005 ----mvbeennnnes

n i
50 80 70 80

Fig.1. The motion of a single solitary wave with
h = 0.1and At = 0.05att = 0 to 20

V. CONCLUSIONS

The B-spline weighted residual methods based on
Galerkinsuccessfully models the motion and interaction of
solitary waves of the MEW equation. Several cases are
chosen from literature to validate performance of the
proposed methods. The accuracy of these methodsare
checked through L,and L. error norm and the invariants
C1,C, and C5. It has been observed that the error where
sufficiently small and the invariants are almost kept
constant during simulation.From Table (1) it is seen that
conservation is excellent since throughout the
simulationl,varies from the analytic value of C, =
0.16667,1,is constant atC; = 0.7854, and I; is also
constant at C; = 0.00521 the total error, measured by the
L, error norm, and the maximum error measured by the L,
error norm. The properties required of a good numerical
schemes described above are clearly exhibited.The results
obtained from numerical experiments are in agreement
with some earlier results available in the literature. Linear
stability analysis proved that the previous methods are
unconditionally stable theoretically and this has been
supported by the test problem as well, the simulation
process is made by using MATLAB 2011 software
package.
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