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Abstract – Theunit commitment (UC) problem is the
problem of deciding which electricity generation units should
be scheduled economically in a power system in order to meet
therequirements of load and spinning reserve.In this paper,
the UC problem is solved for an optimum schedule of
generating units based on the load data forecasted using
advanced local predictors. These local predictors are local
support vector regression (LSVR) and local radial basis
function (LRBF) Low-cost generation is important in power
system analysis. Under forecasting or over forecasting will
result in the requirement of purchasing power from spot
market or an unnecessary commitment of generating units.
Accurate load forecasting is the first step to enhance the UC
solution. Total costs calculated for the actual load and two
different forecasting load data are compared. A 10-units test
system is used for this analysis. The results show the
importance of accurate load forecasting to UC.

Keywords – Dynamic Programming, Kernel Principal
Component Analysis, Load Forecasting, Local Radial Basis
Function, Local Support Vector Regression, Unit
Commitment.

I. INTRODUCTION

Short term load forecasting (STLF) is a vital part of the
operation of power systems. STLF aims to predict electric
loads for a period of minutes, hours, days, or weeks. STLF
has always been a very important issue in economic and
reliable power systems operation such as unit
commitment, reducing spinning reserve, maintenance
scheduling, etc. Sophisticated forecasting tools with higher
accuracy are necessary to achieve lower operating costs
and higher reliability of the electricity supply.

Because of its importance, STLF has been widely
researched and a number of models were proposed during
the past few decades. These can be classified as either
traditional or artificial intelligence (AI) based techniques.
The former include time series predictors such as the
linear or multiple regression [1], autoregressive moving
average exogenous variable (ARMAX) model [2] and
Kalman filtering [3]. These methods are based on a linear
regression model and cannot always represent the
nonlinear characteristics of complex loads [4].

Various AI techniques were used for STLF, such as
artificial neural networks (ANNs) [5], expert systems [6],
radial basis function (RBF) [7] and fuzzy-neural models
[8]. These are very suitable because of their ability not
only to learn time series load curves but also to model an
unspecified nonlinear relationship between the load and its
influencing factors [4].

Recently, SVR [9], [10] has also been applied
successfully to STLF. SVR replaces the empirical risk
minimization which is generally employed in the classical
methods such as ANNs, with a more advantageous
structural risk minimization principle. SVR has been
shown to be very resistant to the over fitting problem and
give a high generalization performance in forecasting
problems [11].

All the above techniques are known as global predictors
in which a predictor is trained using all data available but
give a prediction using a current data window. The global
predictors suffer from some drawbacks which are
discussed in our previous work [12], [13]. To overcome
these drawbacks, the local RBF(LRBF) and the local SVR
(LSVR) predictors are proposed in our previous work
[12]–[14] and used to solve the short term load forecasting
problem.

Unit commitment problem (UC) is a nonlinear, mixed
integer combinatorial optimization problem. The UC
problem is the problem of deciding which electricity
generation units should be scheduled economically in a
power system in order to meet the requirements of load
and spinning reserve. It is a difficult problem to solve in
which the solution procedures involve the economic
dispatch problem as a sub-problem. Since UC searches for
an optimum schedule of generating units based on load
forecasting data, the improvement of load forecasting is
first step to enhance the UC solution [15].

In this paper, we propose UC method to reduce the
production cost by combining load forecasting with UC
problem. First, short-term loads are forecasted using
LSVR, and LRBF models. Then UC problem is solved
using the dynamic programming method.

We have chosen the historical data for the South
Australia electricity market, which includes the power
demand for the period of 2003-2005. Historical weather
data was collected from Macquarie University Web Site
[16]. Then the forecasted loads are fed into 10-units test
system for unit commitment to show the reactions of unit
commitment to forecasting errors.

The paper is organized as follows: Section II discusses
the STLF based local methods.  A review of the UC
problem, its formulation and its solution are presented
briefly in Section III. Applications and simulations for
STLF and UC problem are given in Sections IV and V,
respectively. Finally, Section VI concludes the work.
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II. SHORT TERM LOAD FORECASTING BASED

LOCAL PREDICTORS

A. Phase Space Reconstruction Based on KPCA
Due to the complexity of the historical load data and the

uncertainty of the influencing factors such as weather,
economical, and random factors, the time series
reconstruction technique can be applied to the power load
forecasting. The traditional time series reconstruction
techniques such as the coordinate delay (CD) method have
a serious problem which is discussed in [14], [17]. To
overcome this problem, the kernel principal component
analysis (KPCA) is used recently to process the nonlinear
time series [17].

The main idea of KPCA is first to map the original
inputs into a high dimensional feature space via a kernel
map, which makes data structure more linear, and then to
calculate principal components in the high-dimensional
feature space [18].

Suppose there is a set of data  N

iixX 1 where each
n

ix  and the mean value E[X] = 0. By mapping ix

into }{ ix , KPCA solves the Eigenvalue as following
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Where, Q is an N × N matrix called kernel function.

From (3), one can notice that, the maximal number of
principal components that can be extracted by KPCA is N.
The dimension of pt can be reduced in KPCA by
considering the first several Eigenvectors that is sorted in
descending order of the Eigenvalues.

In this paper, we employ the commonly used Gaussian
kernel defined as:
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B. Support Vector Regression (SVR)
The basic idea of SVR is to map the data x into a high

dimensional feature space via a nonlinear mapping, and
perform a linear regression in that feature space [10] as:

  bxwxf  , (5)

Where., .denotes the dot product, w contains the
coefficients that have to be estimated from the data and b
is a real constant. Using Vapink’sε–insensitive loss
function [9], the overall optimization is formulated as:
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where, xi is mapped to higher dimensional space by the

function , ε is a real constant, i and *
i are slack

variables subject to ε-insensitive zone and the constant C
determines the trade-off between the flatness of f and
training errors.

Introducing Lagrange multipliers i and *
i with

0* ii and 0*
, ii  for i=1,…,N, and according to

the Karush-Kuhn-Tucker optimality conditions [10], the
SVR training procedure amounts to solving the convex
quadratic problem:
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The output is a unique global optimized result that has
the form:
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where, Q(xi,x)=(xi)(x). Using kernels, all necessary
computations can be calculated directly in the input space,
without computing the explicit map (x). Various kernel
types exist such as linear, hyperbolic tangent, Gaussian,
polynomial, etc. [10]. Here, we employ the commonly
used Gaussian kernel as defined by (4).
C. Local Predictors

Local prediction is concerned with predicting the future
based only on a set of K nearest neighbors in the
reconstructed embedded space without considering the
historical instances which are distant and less relevant.
Local prediction constructs the true function by
subdivision of the function domain into many subsets
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(neighborhoods). Therefore, the dynamics of time series
can be captured step by step locally in the phase space and
the drawbacks of global methods can be overcome.

The LSVR and LRBF methods can be summarized as
follows [12]:

First, reconstruct the time series using KPCA. For, each
query vector q, the K nearest neighbors{zq

1,
zq

2,...,zq
K}among the training inputs is choosing using the

Euclidian distance as the distance metric between the q
and each z in the reconstructed time series. Using these
Knearest neighbors, train the SVR (or RBF) to
obtainsupport vectors and corresponding coefficients.
Finally, the output of SVR (or RBF) can be computed.

III. UNIT COMMITMENT PROBLEM

FORMULATION

The objective of the UC is to minimize the system
operating costs, which are the sum of production and
startup costs of all units over the entire study time span,
under the generator operational and spinning reserve
constraints [19].

Mathematically, the objective function, or the total
operating cost of the system can be written as follows [18],
[20]:
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where t
iP is the output power of unit i at period t, t

iu is

the commitment state of unit i at period t,  t
ii PF is the

fuel cost of unit i at output power t
iP , t

iS is the start up

price of unit i at period t, N is the number of generating
unit and T is the total number of scheduling periods.
The constraints are as follows:
- Power balance:
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where Dt is the customers’ demand in time interval t.
- Generating limits: These limits definethe region within
which a unit must be dispatched.
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- Minimum up time: Once the unit is committed, it must
be kept running for certain number of hours, called the
minimum up time, before allowing turning it off. This can
be formulated as follows:
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where, t
ionX , is the number of hours the unit has been on

line and up
iT is the minimum up time.

- Minimum down time: Once the unit is turned off, it is
not allowed to be brought online again before spending
certain number of hours called minimumdown time. This
can be formulated as follows:
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where t
ioffX , is the number of hours the unit has been off

line and down
iT is the minimum down time.

- Spinning reserve: It can be modeled as follows
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where tR is the spinning reserve requirements.
- Start up cost which can be modeled by the following
form:
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where, ii CSHS , is the unit’s hot/cold start up cost and
iCH is the cold start hour.

Fuel cost functions  t
ii PF is frequently represented by

the following polynomial function:
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where iii cba ,, are the coefficients for the quadratic cost

curve of generating unit i.
The details of the dynamic programming method which

used in this paper can be found in [21], [22].

IV. FORECASTING RESULTS

In this paper, the performance of the LWSVR is tested
and compared with local SVR and local RBF using hourly
load and temperature data in South Australia. The load
data used includes hourly load for the period of 2003-2005
for the South Australia electricity market. While the
hourly temperature for the same period is collected from
Macquarie university web site.

Choosing K is very important step in order to establish
the local prediction model. There are some methods used
in literatures to find this parameter such as cross validation
[23] and bootstrap [24]. In this paper K is calculated using
a systematic method which is proposed by us in [13]:
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where, N is the number of training points, kmax is the
maximum number of nearest neighbors, Dk(xi) is the
distance between each training point x and its nearest
neighbors while Dmax is the maximum distance,
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around the points which is inversely proportional to the
local densities and  is a constant. The two constants kmax

and  are very low sensitivity parameters.kmax can be
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chosen as a percentage of the number of training points
(N) for efficiency while  can be chosen as a percentage.
In this paper, kmax and  are always fixed for all test cases
at 70% of N and 95, respectively.

In addition, the parameters of the KPCA algorithm
which are the number of principal components (nc) and 2

in the Gaussian kernel function are computed using the
cross validation method. The values of these parameters
are 13 and 1.05, respectively.

We quantified the prediction performance with the
Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE). They can be defined as
follows:
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where, A and F are the actual and the forecasted loads,
respectively, n is the testing dataset size, and i denotes the
test instance index.

To make results comparable, the same experimental
setup is used for the three predictors. That is the week of
February 15-21, 2005 has been used as attesting week. The
available hourly load and temperature data (for the period
of 2003-2005) are used to forecast the testing week.

First, we calculate the MAE and MAPE of each day
during the testing week. Then the average MAE and
MAPE values of each method for the testing week are
calculated. The results are shown in Table I.

Table I : Forecasting Results
LRBF LSVR

MAE (GW) 0.0314 0.0213

MAPE (%) 2.3 1.55

These results show that, the LSVR method outperforms
LRBF. It improves the MAE over LRBF by 32.2%.
Whereas, it improves the MAPE over LRBF by 32.6%.

Fig.1. Forecasted and actual hourly load from 15thto 21st

February 2005 using LRBF

Fig.2. Forecasted and actual hourly load from 15thto 21st

February 2005 using LSVR

Figs. 1-2 show the actual load and forecasted load
values using LRBF and LSVR, respectively for the testing
week. Theseresults show that the LSVR gives a better
prediction performance than LRBF. However the
forecasted values of both of them are very close to the
actual values.

V. FORECASTING RESULTS IN UNIT

COMMITMENT

The results of load forecasting are fed into a 10-units
system [25] which is selected as a test system. Table II
shows the test system data. The spinning reserve is
assumed to be 10% of the demand. The actual loads (24
hour) as well as the forecasted loads are given in Table III.
Feasible unit combination and total cost (TC) values of the
10 units test system using dynamic programming method
for load values and forecasting load values are given in
Table IV. It is clear that accurate load forecasting is very
important for the UC solution. The total cost of the
forecasting load values for LRBF method is more than that
of actual load values by $13140.6. Additionally, the total
cost of the forecasting load values for LSVR is more than
that of actual load values by $5016.

VI. CONCLUSION

In this paper, since high accuracy of the load forecasting
for power systems improves the security of the power
system and reduces the generation costs, the next day load
forecasting using LWSVR method firstly made for solving
the UC problem, for 10 units test system. Dynamic
programming method is used for solving the UC problem.
Total costs are calculated for load data which is taken
from South Australia electricity market and forecasting
load data computed by local RBF, local SVR and
LWSVR, separately. Comparing these total costs show
that accurate load forecasting is important for UC. Over-
prediction of STLF wastes resources since more reserves
are available than needed and, in turn, increases the
operating cost. On the other hand, under-prediction of
STLF leads to a failure to provide the necessary reserves
which is also related to high operating cost due to the use
of expensive peaking units.
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Table II: Test System Data
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Pmax (MW) 455 455 130 130 162 80 85 55 55 55

Pmin (MW) 150 150 20 20 25 20 25 10 10 10

a ($/h) 1000 970 700 680 450 370 480 660 665 670

b ($/MWh) 16.19 17.26 16.60 16.50 19.70 22.26 27.74 25.92 27.27 27.79

c ($/MWh2) 0.00048 0.00031 0.0020 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173
up

iT (h) 8 8 5 5 6 3 3 1 1 1
down

iT (h) 8 8 5 5 6 3 3 1 1 1

HS 4500 5000 550 560 900 170 260 30 30 30

CS 9000 10000 1100 1120 1800 340 520 60 60 60

CH 5 5 4 4 4 2 2 0 0 0

Table III: Actual Load of 10 units 24 Hour Test System and the Forecasted Loads Using LRBF and LSVR
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

L
oa

ds
(G

W
)

Actual 1.33 1.19 1.05 1.00 0.96 0.98 1.00 1.04 1.12 1.19 1.24 1.30 1.32 1.32 1.30 1.31 1.34 1.36 1.35 1.35 1.38 1.32 1.28 1.38

LRBF 1.37 1.28 1.14 1.05 0.96 0.98 1.04 1.10 1.12 1.23 1.28 1.39 1.32 1.31 1.31 1.34 1.36 1.37 1.32 1.34 1.39 1.33 1.22 1.40

LSVR 1.35 1.24 1.09 1.03 0.96 0.98 1.03 1.08 1.15 1.23 1.28 1.33 1.30 1.31 1.30 1.29 1.35 1.36 1.33 1.34 1.38 1.33 1.30 1.40

Table IV: Feasible Unit Combination of Test System for Actual Load and Forecasting Load Values Using LRBF and
LSVR

Hour
Feasible UC
(Actual load)

Feasible UC
(Local RBF)

Feasible UC
(Local SVR)

1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0
2 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0
3 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0
4 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0
5 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
6 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
7 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0
8 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0
9 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
10 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
11 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
12 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0
13 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
14 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
15 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
16 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
17 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0
18 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0
19 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0
20 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
21 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0
22 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
23 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
24 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0
TC $ 606165.3 $ 619305.9 $ 611181.5
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