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Abstract – The orthogonal moments defined in a circular 

domain, such as Zernike moments and pseudo-Zernike 

moments, have attracted attention due to their distinctive 

invariance properties. In this research, the accuracy analysis 

of Zernike and pseudo-Zernike moment functions has been 

conducted. Based on our numerical schemes to improve the 

accuracy of the circularly orthogonal moment functions, the 

simulation results show that the individual orders of Zernike 

and pseudo-Zernike moments represent image features 

uniquely. In particular, we discovered that the even orders of 

Zernike and pseudo-Zernike moments describe most of the 

image characteristics, while the contributions of odd orders 

are very limited.  
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I. INTRODUCTION 
 

Since they were introduced by Hu [7] in 1962, moment 

methods have attracted considerable attention from 

researchers. The desirable properties of being invariant to 

image scaling, translation, and rotation promote the 

moment-based descriptors, defined in either the circle or 

rectangle regions, to play significant roles in the scientific 

fields such as image analysis and pattern recognition. For 

a general study of moment methods, we refer to [10] [12] 

[4]. 

Teague first introduced Zernike moments based on the 

basis set of orthogonal Zernike polynomials [15]. And 

another related set of orthogonal moments, denoted as 

pseudo-Zernike moments, is derived based on the basis set 

of pseudo-Zernike polynomials [16]. Due to several 

advanced fundamental properties, particularly the 

distinctive property of being invariant to rotations and 

reflections, both Zernike and pseudo-Zernike moments are 

widely used in several areas, such as object recognition 

[8][1][6], face recognition[5][14][13], and watermarking 

applications[18][3]. 

In this research, we will focus on two circularly 

orthogonal moment functions, namely, Zernike moments 

and pseudo-Zernike moments. Based on our improved 

numerical schemes, we conducted image reconstructions 

from both Zernike and pseudo-Zernike moment functions 

with satisfactory results. We have also investigated the 

individual contributions of circularly orthogonal moment 

functions by reconstructing images from a partial set of 

either Zernike or pseudo-Zernike moments. It is concluded 

that the lower order moments mainly contain the 

fundamental information, while the higher order moments 

preserve image details; in particular, the even orders of 

Zernike moments and pseudo-Zernike moments represent 

most of image characteristics. 

In Section 2, we review the general properties of 

Zernike and pseudo-Zernike moments. To verify the 

accuracy of Zernike and pseudo-Zernike moments, we 

conduct the image reconstructions from both Zernike and 

pseudo-Zernike moments in Section 3. The investigation 

of the characteristics of partial sets of Zernike and pseudo-

Zernike moments will be presented in Section 4. Finally, 

we will make our concluding remarks in Section 5. 

 

II. ZERNIKE MOMENTS AND PSEUDO-ZERNIKE 

MOMENTS 
 

A. Zernike Moments 
Zernike functions, introduced by Zernike in 1934[19], 

are composed of a set of complex orthogonal functions 

with a simple rotational property over the class of square 

integrable functions defined over the unit disk.  

The Zernike function    (   )is defined as 

2 2(x,y) ( )exp(jq ),  x 1pq pqV R y    , (1) 

where  √     and         (   ). 

In (1), the radial polynomial    ( ) of Zernike function 

is [16] 
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where   | | and    is an even number. The radial 

polynomial    ( )  is an orthogonal polynomial, which 

leads to the orthogonality relation for     (   )  in the 

two-dimensional circular domain[9] 
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where       if      and 0 otherwise. 

The Zernike moment of order p with repetition q is 

defined as 
*(x, y) V (x, y)pq pq

D
A f dxdy  ,  (4) 

where  denotes the complex conjugate. 

In digital image processing, when the analog image 

function f(x,y) is digitized into its discrete version f(xi,yj), 

the double integration in (4)needs to be approximated by 

summation formulas. A commonly used formulais 

2 2
i j

*
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Â f (x , y )V (x , y ) x y
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    ,  (5) 

where   and   are the sampling intervals in the x and y 

directions. 

When the orders of the Zernike functions are lower, (5) 

will provide a moderate approximation of (4). However, if 

the orders of the Zernike functions increase, the accuracy 
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of (5) will decrease. 

Figure 1 shows an example of the distribution of 

Zernike polynomial       (   ) within the pixel located at 

(      ) of an image sized at        . It is obvious 

that when the order of a Zernike function rises, the 

accuracy of using      to approximate the double 

integrations in (4) will decrease. 

 
Fig.1. The distribution of Zernike polynomial        (   ) 

within the pixel located at (100, 36) of an image sized 

at        . 
 

Referring to the numerical scheme adopted in [17], we 

have applied the numerical scheme 

2 2
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to compute the Zernike moments in our research, where 
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By dividing a pixel into       sub regions with the 

same weights to simulate the double integrations in (7), we 

can increase the Zernike moment computational accuracy 

considerably. 

Due to the completeness and orthogonality of the 

Zernike functions set      (   ) , we can represent an 

original image function  (   ) by an infinite set of its 

Zernike moments 
q p
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where (   )   is the normalizing constant. 

In practice, however, we can only reconstruct the 

original image  (   )  by a finite set of its Zernike 

moments approximately 
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where  is the truncation parameter indicating how many 

Zernike moments are taken into account in image 

reconstruction [9]. 

Another source of Zernike moment computation error, 

geometric error, is inherent and caused by using Cartesian 

image model for Zernike moments calculating[11]. To 

deal with the geometric error, we have discarded all pixels 

that have any sub region falling outside the unit circle in 

our computation process. 

B. pseudo-Zernike Moments 
A modified version of Zernike functions, called pseudo-

Zernike function, was derived by Bhatia and Wolf in 

1953[2]. It is defined as 
2 2

nm nmV (x,y) R ( )exp(jq ),x y 1    , (10) 

where   √     and          (   ) . The radial 

polynomials   ( ) of pseudo-Zernike functions in (10) 

are different from those of Zernike functions, and are 

defined as 
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where             and   is restricted to | |    only. 

Compared to the Zernike polynomials, the set of pseudo-

Zernike polynomials contains (     ) linearly 

independent polynomials of degree    , while the set of 

Zernike polynomials contains only (     )(     ) /2 

linearly independent polynomials of degree   [16]. 

The pseudo-Zernike moment of order n with repetition 

m is defined as 
*

nm nm
D

A f (x, y) V (x, y)dxdy  .  (12) 

To compute the pseudo-Zernike moment    in a 

Cartesian plane, referring to (6) and (7), we apply the 

formula 
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We have also adopted the procedure of dividing a pixel 

into     sub regionswith the same weights to simulate 

the double integration in (14). 

Similar to the Zernike moments, we can reconstruct an 

original image function  (   ) from an infinite set of the 

pseudo-Zernike moments 
m n
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where (   )  is the normalizing constant. In practice, 

we need to truncate the set of pseudo-Zernike moments to 

a finite number in order to reconstruct the image function 

 (   ) 
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where   is the truncation parameter. 

 

III. IMAGE RECONSTRUCTION FROM ZERNIKE 

MOMENTS AND PSEUDO-ZERNIKE MOMENTS 
 

A. Image Reconstruction from Zernike Moments 
To verify our newly proposed numerical schemes to 

compute the Zernike moments, we will conduct the image 

reconstruction tasks by applying (9). Figure 2 shows two 



 

 

 

 

 

Copyright © 2014 IJEIR, All right reserved 

509 

 International Journal of Engineering Innovation & Research  

Volume 3, Issue 4, ISSN: 2277 – 5668 

testing images utilized in this research. The image (a) is 

sized by        with     gray levels, and (b) is sized 

by        with     gray levels. 

 
Fig.2. The testing image (a) sized by        and (b) 

sized by        . Both of the testing images have 256 

gray levels. 

 
 

 

The Peak Signal to Noise Ratio (PSNR) is applied in our 

experiment as the measurement to compare the 

reconstructed images with the original testing image. 

PSNR is the ratio between the maximum power of the 

signal and the affecting noise and is image independent. 

The definition of PSNR is given by 

2

I
10

MAX
PSNR 10log

MSE

 
  

 
,   (17) 

where      is the maximum gray level value of the 

image, which is 255 for our testing images. The Mean 

Squared Error (MSE) is defined as 
N N

2

i j i j2
i 1 j 1

1 ˆMSE [f (x , y ) f (x , y )]
N  

  ,  (18) 

where i jf (x , y )  and 
i jf̂ (x , y ) are the original image and 

the reconstructed image, respectively. 

 
Fig.3. Some reconstructed image from different maximum Zernike moments with various     numerical schemes. 
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Figure 3 displays some reconstructed Figure 2 (a) from 

different maximum orders of Zernike moments with 

various     numerical schemes.The corresponding 

PSNR values of these reconstructed images are shown in 

Table 1. 

Table 1: Corresponding PSNRs of Figure 3 

  k=1 k=3 k=5 k=7 

T=40 22.859 22.799 22.780 22.772 

T=80 24.761 25.398 25.391 25.397 

T=120 24.885 27.148 27.153 27.152 

T=160 24.414 27.912 27.928 27.933 

T=200 23.647 28.192 28.189 28.202 

T=240 22.901 28.301 28.350 28.350 

 

With the     numerical scheme, we reconstructed 

Figure 2 (b) from different maximum orders of Zernike 

moments. Figure 4 illustrates some of the reconstructed 

images. 

 

 
Fig.4. Some reconstructed images from different maximum orders of Zernike moments with the    numerical scheme. 

 

B. Image Reconstruction from pseudo-Zernike 

Moments 
We have performed the image reconstruction tasks from 

pseudo-Zernike moments as well. Figure 5 shows some 

reconstructed images from different maximum orders of 

pseudo-Zernike moments with various numerical schemes, 

while Table 2 exhibits the corresponding PSNR values of 

these reconstructed images shown in Figure 5. 

Table 2: Corresponding PSNR values of the reconstructed 

images shown in Figure 5 

 k=1 k=3 k=5 k=7 

T=40 24.132 24.153 24.134 24.126 

T=80 25.503 26.726 26.721 26.742 

T=120 25.442 27.614 27.616 27.613 

T=160 24.655 27.902 27.923 27.926 

T=200 24.006 28.062 28.071 28.088 

T=240 23.407 28.139 28.185 28.180 

Figure 6 displays some reconstructed Figure 2 (b) from 

different maximum orders of pseudo-Zernike moments 

with the    numerical scheme. 

With the same maximum orders and    numerical 

scheme, the reconstructed images from pseudo-Zernike 

moments are superior to the imagesreconstructed from 

Zernike moments. This can be explained by the set of 

pseudo-Zernike moments containing (     ) linearly 

independent polynomials, while the set of Zernike 

polynomials holds only (     )(     )   linear 

independent polynomials. Therefore, for the same 

maximum order, the pseudo-Zernike moments preserve 

more image information than the Zernikemoments. 
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Fig.5. Some reconstructed images from different maximum orders of pseudo-Zernike moments with various     

numerical schemes. 
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Fig.6. Some reconstructed image from different maximum pseudo-Zernike moments with the    numerical scheme. 

 

IV. IMAGE RECONSTRUCTIONS FROM PARTIAL 

SETS OF CIRCULARLY ORTHOGONAL 

MOMENTS 
 

With the previously presented more accurate moment 

computation results and reconstructed images, we are able 

to investigate the individual contributions by a partial set 

of Zernike and pseudo-Zernike moment functions. 

 

 

C. Image Reconstructions from Partial Sets of Zernike 

Moments 

To inspect the image reconstruction performances 

determined by a limited set of Zernike moments, we adopt 

the formula 
q pT2

pq pq

p T1 q p

p 1ˆ ˆf (x, y) A V (x, y),  | q | p  and p q even




 


    

(19) 

where T1 and T2 decide the range of the partial sets of 

Zernike moments. 

 
Fig.7. (a) Image reconstructed by the orderset of 0 to 80; (b) Imagereconstructed by the order set of 81 to 240; (c) Image 

reconstructed by the order set of 0 to 240; (d) Image obtained by performing the direct additional operation on (a) and (b). 

 

Figure 7 shows the reconstructed Figure 2 (a) from the 

sets of Zernike moments orders 0 to 80, 81 to 240, 0 to 

240, and the image obtained by the direct addition 

operation of the sub-figures Figure 7 (a) and (b). It should 

be noted that Figure 7 (c) and (d) are identical, which 

indicates that the contributions of individual sets of 
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Zernike moments in the image reconstruction process are 

independent and accumulative. It is obvious that the lower 

order sets of Zernike moments contain more fundamental 

image information, while thehigher order sets of Zernike 

moments represent more image details. 

To address the characteristics of partial sets of Zernike 

moments further,we have conducted the image 

reconstructions from either the even or oddorders of 

Zernike moment functions only. According to the 

definition of Zernike functions, the integer q takes positive, 

negative, or zero values, and satisfies 

| q | p  

where   | | is an even number. Therefore, to investigate 

the characteristics of either even or odd order sets of 

Zernike moments, we only need to consider parameter p. 

 

Table 3 illustrates the details of choosing the parameter 

p for image reconstructions by either the odd or even order 

sets of Zernike moment functions only. The odd order sets 

are highlighted in blue, while the even order sets of 

Zernike moments are highlighted in gold. 

Table 3: The structure of using order p to reconstruct an 

image 

 

 
Fig.8. (a) Image reconstructed by the odd order set; (b) Image reconstructed by the even order set; (c) Image 

reconstructed by the complete order set of Zernike moments. 
 

 
Fig.9. Image reconstructed from different even order sets of Zernike moments with the    numerical scheme on Figure 

2 (b). 
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Figure 8 shows the reconstructed images of Figure 2 (b) 

from the Zernike moments by using the odd order sets of 1 

to 119, the even order sets of 0 to 120, and the complete 

sets of 0 to 120, respectively. It can be clearly observed 

that the set of even orders of Zernike moments contributes 

nearly all of the image characteristics of the original image, 

while the image representation of the odd order of Zernike 

moments is very limited. 

 
Fig.10. PSNRs comparison of the reconstructed images 

presented in Figure 4 and Figure 9. 

 

Figure 9 presents some reconstructed Figure 2 (b) from 

different even order sets of Zernike moment functions. 

Compared with the image reconstruction performances 

shown in Figure 4, the visual differences between the two 

sets of reconstructed images are ignorable. Figure 10 

displays the PSNR values of the reconstructed images 

presented in both Figure 4 and Figure 9 for comparison. 

D. Image Reconstructions from Partial Sets of 

pseudo-Zernike Moments 
To investigate the image reconstruction performances 

from a limited set of pseudo-Zernike moments, we utilize 

the formula 
T2 m n

nm nm

n T1 m n

n 1ˆ ˆf (x, y) A V (x, y),  | m | n




 


   , (20) 

where T1 and T2 indicate the upper and lower bounds of 

the partial sets of pseudo-Zernike moments. 

Figure 11 displays the images reconstructed from Figure 

2 (a) with two partial sets of pseudo-Zernike moments, 

orders ranged from 0 to 80 and 81 to 240, the completed 

set of pseudo-Zernike moments orders from 0 to 240, and 

the image achieved by the direct addition operation on (a) 

and (b). As expected, Figure 11 (c) and (d) are identical 

because individual sets of pseudo-Zernike moments 

contribute in the image reconstruction process 

independently. Similar to the Zernike moments, the lower 

order sets of pseudo-Zernike moment functions represent 

more fundamental image information, whilethe higher 

order sets include more details. 

 

 
Fig.11. (a) Image reconstructed by the order set of 0 to 80; (b) Image reconstructed by the order set of 81 to 240; (c) 

Image reconstructed by the order set of 0 to 240; (d) Image resulted by performing the additional operation on (a) and (b) 

directly. 

 

In this research, we have also performed the image 

reconstruction tasks using only the even or odd orders of 

pseudo-Zernike moment functions. 

Table 4: The structure of using order m to reconstruct an 

image. 

 
 

By the definition of pseudo-Zernike functions, the only 

limitation of  is | |   . Table 4 demonstrates the parity 

of the parameter  of pseudo-Zernike functions. The 

columns highlighted by gold represent the even order sets 

of pseudo-Zernike functions, while the odd order sets are 

highlighted by blue. 

Figure 12 presents the reconstructed Figure 2 (b) from 

the pseudo-Zernike moment functions with the set of odd 

orders1 to 119, the set of even orders 0 to 120, and the 

complete set of pseudo-Zernike moments of orders 0 to 

120, respectively. Similar to the image reconstructions 

using the Zernike moment functions, the even order sets of 

pseudo-Zernike moments provide most of the image 

descriptions of the original image, while the image 

information represented by the odd order sets is very 

lacking. 
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Figure 13 displays some reconstructed images of Figure 

2 (b) from different even order sets of Zernike moment 

functions. We can observe that the visual differences 

between the two collections of the reconstructed images in 

Figure 4 and Figure 9 are very limited. For comparison, 

Figure 14 shows the PSNR values of the reconstructed 

images presented in both of Figure 4 and Figure 9. 

 

 
Fig.12. (a) Image reconstructed by the set of odd order pseudo-Zernike moments; (b) Imagereconstructed by the set of 

even order pseudo-Zernike moments; (c) Imagereconstructed by the complete set ofpseudo-Zernike moments. 

 

 
Fig.13. Images reconstructed from different even order setsof pseudo-Zernike moments with the    numerical scheme. 
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Fig.14. PSNRs comparison of the reconstructed images 

presented in Figure 6 and Figure 13. 

 

V. CONCLUDING REMARKS 
 

In this research, we have conducted the accuracy 

analysis of orthogonal moment functions defined in a 

circular domain and proposed a numerical scheme to 

improve calculations of the circularly orthogonal moment 

functions. To verify the validity of this numerical method, 

we have performed the image reconstructions from higher 

orders of Zernike and pseudo-Zernike moment functions 

with satisfactory results. 

We have investigated the image reconstructions from 

partial sets of Zernike and pseudo-Zernike moment 

functions as well. Our experimental results are inline with 

the general moment theory that the lower orders moment 

functions contain most of the fundamental information of 

the original image, while the higher orders moments 

represent more detailed image features. Furthermore, we 

have discovered that the even order sets of Zernike 

moments and pseudo-Zernike moments characterize most 

of the image characteristics, while the contributions of the 

odd order sets are very limited. 
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