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Abstract – The reliability analysis of a post tensioned
Girder in different limit states will help to formulate the
reliability based design criteria, which will ensure the
satisfactory performance of a structural element.  The LRFD
Format is used in foreign countries, enough research has not
been done in the Indian conditions.  This paper presents the
methodology for generation of resistance statistics of post-
tensioned Girders in the limit state of flexure.  The equation
for the ultimate flexural strength is taken from Indian
Standard Code IS: 1343-1980.  Statistics of basic design
variables are taken from available literature.  Monte Carlo
Simulation is used to generate the data.  Partial safety factors
are computed for target reliability index 0, using AFOSM
method.  A sample calculation for partial safety factors for
the design variables for a Target Reliability Index 4.0 are
worked out.
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I. INTRODUCTION

Design formats are undergoing many changes in the
light of probabilistic studies.  Ultimately structural design
codes are established for the purpose of providing a
simple, safe and economically efficient basis for the
design of structures under normal loading, operational and
environmental conditions.  Design codes take basis in
design equations from which the reliability verification of
a given design may be easily performed by a simple
comparison of resistances and loads or load effects.  Load
and resistance are treated as random variables.

Over the years different approaches for establishing
design values for resistances and loads have been applied
in many countries.  However, all design codes have
adopted Load and Resistance Factors Design Format
(LRFD). Different versions of the LRFD format exists in
the codes, CIRIA, CEB, Eurocodes, AASHTO, LRFD and
OHBDC, but they are essentially based on the same
principles [12, 14, 15].  In the Indian Scenario, there is a
need to calibrate the code towards more rational method
like LRFD.  The following methodology is used.  A
number of representative sections are designed using a
suitable algorithm like the one suggested by Prasad Rao
[1], that employs minimum concrete area and hence
employs minimum pre-stressing force, leading to a
minimum cost design [1, 4, 5, 6, 8, 9, 10].

The sections designed for different combinations of
loads, spans and class of the structural components are

used to generate the resistance statistics as per IS: 1343-
1980 provisions [2].  The Reliability Index  is computed
by AFOSM method.  The Monte Carlo Simulation
technique is used to generate random data on resistance for
each of the design situations and a suitable resistance
model is developed for flexural strength.  Code calibration
is attempted by selecting values of target reliability 0

which would reflect the average reliability implicit in
current designs.  The partial safety factors for the loads
and the strength random variables that can be used as a
basis for developing design requirements are worked out.
LRFD format is proposed for the design of PSC Bridge
Girders in limit state of flexure.  The values of resistance
factors  and load factors D and L are determined through
a calibration process that limits the probability of failure Pf

to a small target value.
In an LRFD code, the basic design formula is
 i Xi <  Rn …(1)
Here Xi = nominal (design) load component i, i = load

factor i; Rn = nominal (design) resistance; and  =
resistance factor.  The objective of calibration is to
determine load and resistance factors so that the safety of
bridges designed according to the code will be at the pre-
selected target level [19].  Sensitivity analysis is
performed for load and resistance parameters.

II. THE IS: 1343-1980 PROVISIONS

The theoretical model for the ultimate moment of
resistance of the flanged section is obtained from the
expression [2],
Mu = fpu Apw (d-0.42 Xu) + 0.675 fck (b-bw) Df (d-0.5 Df).

The governing equation for calculating the resistance
statistics is,
R =  fpu *  Apw (d – 0.42  Xu) + 0.675  fck (b - bw)

 Df (d – 0.5  Df) …(2)
2.1. Monte Carlo Simulation Method

Using the Monte Carlo technique, random deviates of
various variables are generated and then using the same in
prediction equation, sample values of R is generated [11,
17, 18].

Generally, the value of R are normalized with its
corresponding nominal value Rn, so that the statistics of R
of different design can be compared.  Rn is obtained by
substituting the nominal values of the variables in the
prediction equation.  It is to be noted that Rn is
deterministic and is constant for a particular value of
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design.  The histograms of the generated data well fits the
log normal distribution, based on Kolmogorove Smirnov
(K.S) Test. Fifteen representative sections are chosen,
40,000 data sets were randomly generated for each cross-
section, and each data set varied randomly as a function of
statistical models for the variables involved bias

([mean/nominal], coefficient of variation [COV = standard
deviation/mean], and distribution type).  The variables
included in the study are dimensions, material properties,
loads and uncertainty of the analysis model.  The
statistical models used in this study were determined after
a review of the literature, which is summarized in Table 1.

Table 1: Statistics of the basic variables
Variable Bias (Mean / Nominal) COV (%) Distribution Type
Dimensions (D, d, b) 1.00-1.03 3.0-7.0 Normal
Area of Steel (Ap) 1.00-1.03 1.0-4.0 Normal
Concrete Strength (fpu) 1.00-1.04 2.0 Normal
Model Uncertainty () 1.01-1.10 4.5 Normal
Uncertainty of Girder DF() 0.89-1.02 9.0-14.0 Normal

Wearing Surface Loads (WS) 1.00-1.10 8.0-20.0 Normal
Dead Load (D) 1.00-1.05 9.0-10.0 Lognormal

Live Load (L) 1.25-1.35 18.0 Lognormal

The resistance statistics, bias factor and reliability index
for the fifteen representative design sections are presented
in Table 2.  These statistical parameters are referred to in

the literature as the resistance model [11, 17, 18]. A
MATLAB program was developed to calculate Reliability
Index. The reliability index is non-normal[20].

Table 2: Results of Monte Carlo Simulations (Moments in KN-m)
Design Case ML/MD Rn Nominal

Value
R Mean Value Bias COV Reliability

Index 
PS1 0.68 4.4 E+08 4.92 E+08 1.12 9.52 5.18
PS2 0.66 4.95 E+08 5.55 E+09 1.12 9.65 5.28
PS3 0.64 5.51 E+08 6.18 E+08 1.12 9.81 5.28
PS4 0.62 6.39 E+08 7.16 E+08 1.12 9.76 5.70
PS5 0.61 7.19 E+08 8.06 E+08 1.12 9.61 5.90
PS6 0.73 9.09 E+08 1.02 E+09 1.13 9.97 4.95
PS7 0.72 1.01 E+09 1.14 E+09 1.13 10.06 5.14
PS8 0.70 1.13 E+09 1.27 E+09 1.13 10.03 5.30
PS9 0.68 1.26 E+09 1.42 E+09 1.13 9.99 5.46

PS10 0.67 1.40 E+09 1.58 E+09 1.13 10.13 5.70
PS11 0.73 1.40 E+09 1.57 E+09 1.13 10.28 5.67
PS12 0.72 1.94 E+09 2.17 E+09 1.12 9.43 5.69
PS13 0.70 2.34 E+09 2.61 E+09 1.12 9.50 6.03
PS14 0.68 2.55 E+09 2.85 E+09 1.12 9.58 6.20
PS15 0.67 2.78 E+09 3.11 E+09 1.12 9.55 6.33

III. LIMIT STATES

The available reliability methods are presented in
several books [17, 18].  Reliability analysis can be
performed using iterative procedures, by Monte Carlo
Simulations or using special sampling techniques.  Limit
States are the boundaries between safety and failure.
There are three types of limit states.  Ultimate Limit States
(ULS) are mostly related to the bending capacity, shear
capacity and stability.  Serviceability Limit States (SLS)
are related to gradual deterioration users comfort or
maintenance costs.  The third type of limit state is fatigue.
This paper is focused on the ultimate limit state of the
moment carrying capacity [13].

IV. RELIABILITY INDEX

A traditional notion of the safety limit is associated with
the ultimate limit states.  For example, a beam fails if the
moment due to loads exceed the moment carrying
capacity.  Let R represent resistance (moment carrying
capacity) and S represent the load effect (total moment
applied to the considered beam).  Then the corresponding
limit state function, g, can be written,

G = R – S …(3)
The g > 0, the structure is safe, otherwise it fails.  The

probability of failure, Pf, is equal to,
Pf = Prob (R – S < 0) = Prob (g < 0) …(4)
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Let the probability density function (PDF) of R be fR

and PDF of S be fS.  Then, let Z = R – S.  Z is also a
random variable and it represents the safety margin.

In general, the limit state function can be a function of
many variables (load components, influence factors,
resistance parameters, material properties, dimensions,
analysis factors).  A direct calculation of Pf may be very
difficult, if not impossible.  Therefore, it is convenient to
measure structural safety in terms of a reliability index, .
Reliability index is directly related to the probability of
failure:
 = – –1 (Pf) …(5)

Where –1 = inverse standard normal distribution function.
There are various procedures available for calculation of
.  These procedures vary with regard to accuracy,
required input data and computing costs and they are
described in [17].
4.1. Advanced First Order Second Moment Method:

To over come short comings in the FOSM methods, an
advanced First order second moment method is adopted in
which the limit state in the variables are first transferred to
reduced variables with zero mean and unit variance, in the
space of reduced coordinates Zi, the limit state is, g (Z1, Z2

… Zn) = 0.  An algorithm proposed by Fissler (1980) is
used with reduced variables and gives the values of  after
only one set of iterations.  The procedure is as follows.
The formulation equation for moment of resistance is
given as, g (x) = R – S, where the resistance,
R = fpu Apw (d-0.42 Xu) + 0.675 fck (b – bw) Df (d-0.5 Df)

…(6)
Where,
Ap = Apw + Apf, and
Apf = 0.675 fCK (b – bw) (Df / Fp) …(7)
and the Action

S =
8

LW

8

LW 2
L

2
d  …(8)

x =  Apf = 0.675  fck (b – bw) (Df /  fp) …(9)
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Then, y =  Apw =  Ap –  Apf …(11)
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Where, y / Ap = 1; y/Apf = –1
The failure surface equation is,
g (z) = fpu Apw (d – 0.42 x4) + 0.675 fck (b–bw) Df (d–0.5

Df) – WLL2 / 8 – WDL2 / 8 = 0 …(13)
Normalizing the basic variables the equation becomes;
g(y) = (fpu + Y1  fpu) (Apw + Y2  Apw) [(d + Y3 d)

– 0.42 (xu + Y4 xu)] + 0.675 (fck + Y5  fck)
[(b+Y6 b) – (bw + Y7  bw)] (Df + Y8 Df)
[(d + Y3 d) – 0.5 (Df + Y8  Df)] – [((wd +
Y9 wd) (L + Y10 L)2) / 8] – [((wL + Y11wL)
(L + Y10 L)2) / 8] = 0 …(14)

Evaluate, g(y) / y1 = h'1; g(y) / y2 = h'2; g(y) / y3 =
h'3; g(y) / y4 = h'4; g(y) / y5 = h'5; g(y) / y6 = h'6;
g(y) / y7 = h'7; g(y) / y8 = h'8; g(y) / y9 = h'9; g(y)
/ y10 = h'10 and g(y) / y11 = h'11

.

Step 1: Determine an expression for g (x).
Step 2: Evaluate an expression for h (y).
Step 3: Determine an expression for all first derivates of
h(y), h'i.
Step 4: Set yi = 0, and  = 0.
Step 5: Evaluate all h'i values.
Step 6: Evaluate h(y).
Step 7: Evaluate standard deviation of Z, from:

 2'
i )(hσz

Step 8: Evaluate new values for y, from:
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h
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i

Step 9: Evaluate,  = yi
2

Step 10: Repeat steps 5 to 9 until values converge.
A MATLAB program was developed to perform the

above calculation.  Reliability Index is determined for
various beams with span 10 m to 17 m and combined load
15 N / mm2 to 25 N / mm2.

Table 3: Results of  from AFOSM method
No Case Reliability Index 
1 PS1 4.82
2 PS2 4.69
3 PS3 4.70
4 PS4 4.68
5 PS5 4.74
6 PS6 4.39
7 PS7 4.36
8 PS8 4.37
9 PS9 4.41
10 PS10 4.29
11 PS11 4.17
12 PS12 4.21
13 PS13 4.23
14 PS14 4.29
15 PS15 4.24

V. CODE CALIBRATION

The development of structural reliability methods during
the last 3 to 4 decades have provided a more rational basis
for the design of structures in the sense that these methods
facilitate a consistent basis for comparison between the
reliability of well tested structural design and the
reliability of new types of structures.  For this reason the
methods of structural reliability have been applied
increasingly in connection with the development of new
design codes over the last decades.  By means of structural
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reliability methods the safety formats of the design codes
i.e., the design equations, characteristic values and partial
safety factors may be chosen such that the level of
reliability of all structures designed according to the
design codes is homogeneous and independent of the
choice of material and the prevailing loading, operational
and environmental conditions.  This process including the
choice of the desired level of reliability or “target
reliability” is commonly understood as “Code Calibration”
[14, 15].
5.1. Partial Safety Factors:

The reliability based design criteria is developed using
the First-order second moment approach.  The reliability
in terms of  was calculated for given safety factor for a
given limit state.  Now the process is reversed: partial
safety factors are to be evaluated for a given target 0.
The same First-Order Second Moment approach is used.
In the normalized coordinate system, for a given failure
surface the shortest distance from the origin ‘O’ to the
failure surface defines the safety of the design [7, 15].
Different levels of safety (i.e., ) will yield different
failure surfaces amounting to different designs.

Hence, in the reliability based design, the problem is to
determine the design values of the variables that will result
in designs having failure surfaces that comply with the
required safety index .  If xi is the design value of the
original variable Xi, the failure surface equation is,

g (x*
1, x

*
2 …………. x*

n) = 0 …(15)

If the partial safety factors are to the nominal values of
variables:
The above equation becomes

g (1 xn1, 2 xn2 ….. rn xnm) = 0 …(16)
The design point should be the most probable failure

point.  In the normalized coordinate system, the most
probable failure point is given by
z*

i = *
i  i = 1, 2 ….. n …(17)
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















n

i

i

zig

zig

1

2
*1

*1*

)/(

)/(
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along the axes Zi …(18)
The original variates are given by
x*

i = i + i zi
*

= i + i i
* 

= i (1+i i
* ) …(19)

where i is the coefficient of variation of Xi.  Hence the
partial safety factor required for the given  is
i = xi

* / xni = i (1+i 
*
i ) / xni …(20)

if the partial safety factors are specified with respect to the
mean value then,
ci = x*

i / i

ci = l + i 
*
i  …(21)

5.2. Sample calculation:
It is to determine the partial safety factors for the design

variables if the Target Reliability Index is 4.0

Table 3 (a) Statistics of the study variables
Variable Mean Nominal Nominal Value  Distribution
X1: Yield Strength of Prestressing steel 1.04 1020.51 N / mm2 0.1 Normal
X2: Compressive Strength of Concrete 1.1 40 N/mm2 0.81 Normal
X3: Combined Load 1.25 15 N/mm 0.18 Lognormal

The limit state equation in the original space,
g (x) = 0, is g (z) = [fp Apw (d-0.42 xu) + 0.675 fck (b-bw)

Df (d-0.5 Df) – WL2 / 8] = 0
If x*

1, x
*
2 and x*

3 are the design points, Then
g(z) = x1 Apw (d-0.42 xu) + 0.675 x2 (b–bw) Df (d-0.5 Df) –

x3L
3 / 8 = 0 …(22)

The procedure for computing of the partial safety factor
is as follows:
Step 1: Start with any x*

1, x
*
2 and x*

3.

Step 2: Compute 3 and 3 of the non-normal variable X3

at the design point x*
3; using the equation;

**1.. )]([ iiXiXiXi xxF   …(23)
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Step 3: Compute design constant ‘d’ by using the equation
d = [x1 Apw 0.42 xu + 0.675 x2 (b–bw) 0.5 Df

2 + x3 L2 / 8] /
[x1 Apw + 0.675 x2 (b–bw) Df] …(25)

Step 4: Compute directional cosines; using the equations
1 = g(x) / x1; 2 = g(x) / x2 and 3 = g(x) / x3.
Step 5: Determine the new design points

 ***
iiix  …(26)

Step 6: Go to step 2, and repeat the procedure till the
required convergence is achieved.

A MATLAB program has been developed for
computing the partial safety factors and the calculated
sample values are tabulated in Table 4.

Table 4: Calculation of partial safety factors

Variable
Iteration

Start 1 2 3 4 5 6
x*

1 1061.330 1010.050 945.100 932.690 912.680 908.250 942.680
x*

2 48.000 39.090 35.700 31.590 30.179 29.600 29.600
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x*
3 15.200 22.470 21.040 20.990 20.983 20.700 20.700

d 217.860 324.470 329.830 329.830 329.830 329.830 329.830
1 -0.070 -0.150 -0.160 -0.157 -0.159 -0.160 -0.160
2 -0.520 -0.710 -0.712 -0.717 -0.719 -0.720 -0.720
3 0.850 0.690 0.689 0.685 0.680 0.680 0.680

The partial safety factors with respect to nominal values,
for Target Reliability Index 0 = 4.0 are;
1 = fp = 908.25 / 1020.51 = 0.89; 2 = fck = 296 / 4.0 =
0.74; 3 = W = 20.7 / 15 = 1.38

The partial safety factors for different values of Target
Reliability are computed and tabulated below:

Table 5: Partial safety factors for different Target 0

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
fp 0.96 0.94 0.93 0.91 0.89 0.87 0.84 0.82 0.79 0.76 0.73
fck 0.89 0.85 0.82 0.78 0.74 0.7 0.66 0.61 0.57 0.52 0.47

w 1.22 1.26 1.31 1.34 1.38 1.41 1.44 1.46 1.47 1.48 1.49

VI. SENSITIVITY ANALYSIS

The most sensitive parameters in the reliability analysis
are identify and these parameters are considered as prime
target in the effort to control probability of failure.  Using
the developed system reliability procedure, the sensitivity
functions were developed for designed girders.  Each
sensitivity functions represents the relationship between a
parameter and reliability index.

Various values of the bias factor (mean / nominal value)
are considered for the parameter under study, from the
actual value required by the code, up to value that is over
30% different, either larger (loads) or smaller (strength).
The results indicate that the most important parameters are
related to resistance. On the other hand, the least sensitive
parameters are compressive strength of concrete and dead
load.

The sensitivity analysis is performed by
1) Keeping the uncertainty only in variable under study

and considering other variables as deterministic, the
reliability index  is calculated.

2) By considering the uncertainty in all other variables
except the variable under study, the reliability index 
is calculated.

This procedure for all the variables
The value of  obtained from (1) for most sensitive

variable will be the minimum and correspondingly 
obtained from (2) for the same variable will be the
maximum.

Sensitivity analysis of the PSC girders is carried out and
the results of PS1 and PS2 are tabulated in Table 6.  The
basic design variables are listed in the order of their
sensitivity.

Table 6: Sensitivity study for PS1 and PS2

Study
variable

PS1 PS2
Uncertainty in all

variable Except study
variable

Uncertainty only
in study variable

Uncertainty in all
variable Except study

variable

Uncertainty only in
study variable

fck 16.37 5.63 16.12 5.46
b 5.5 22.07 5.35 21.51

WL 5.47 27.62 5.31 28.08
WD 5.47 30.23 5.3 31.23
Df 5.45 35.39 5.29 34.42
Fp 5.45 44.93 5.29 43.44
Bw 5.42 70.62 5.26 69.51
Ap 5.43 91.71 5.27 92.65
bw 5.43 70.62 5.27 69.51
fpu 5.42 2215.71 5.26 2228.16
d 5.42 2215.71 5.26 2228.16
L 5.42 2315.71 5.26 2428.16

VII. CODE CALIBRATION USING LRFD
METHOD

The design equation is

 Rn  L ML + D MD …(27)

Where,  = Strength factor
Rn = Nominal (or design) strength
L = Load factor for live load component
D = Load factor for dead load component
ML = Live load moment
MD = Dead lead moment
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The following are the steps involved for calibration of
the LRFD specifications by reliability theory.
Step 1. Estimate the level of reliability implied in the
current LSD methods for analysing the girder.
Step 2. Observe the variation of reliability levels with
different span lengths, load ratios, section geometry and
methods of predicting resistance.

Step 3. Select target reliability index based on the margin
of safety implied in current designs.
Step 4. Calculate resistance factors consistent with the
selected target 0.
The sample results for 0 = 4; are tabulated below:

Table 7: Results of , L and D for 0 = 4
LL/DL 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
 0.69 0.69 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

D 1.12 1.10 1.09 1.09 1.08 1.08 1.08 1.07 1.07 1.07 1.07 1.07
L 1.44 1.49 1.53 1.55 1.57 1.58 1.59 1.59 1.60 1.61 1.61 1.61

VIII. CONCLUSION

Limit state of flexure is selected in the present study.
Prasadrao method is found to be best suited for generating
optimum sections for various design situations.  The
resistance statistics generated by Monte Carlo simulations
shows that a normal distribution is adequate to fit the data.
The bias factor is about 1.12 and value of COV of
randomness of moment of Resistance is about 10% and 
varies from 2 to 6.  AFOSM method is used to find ,
which varies from 4.2 to 4.8.  Reliability based design is
proposed, partial safety factors were calculated for
different .  The recommended values provide a uniform
safety level for the considered design cases.  PSF for fp

varies from 0.73 to 0.96 when  varies from 7 to 2 and
corresponding values of fck and combined load vary from
0.47 to 0.89 and 1.49 to 1.22 respectively.  By sensitivity
analysis, the order of sensitivity of variables is established.
An attempt is made for code calibration using LRFD
method for the PSC bridge girders.
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