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Abstract − Some construction methods of affine resolvable 
balanced incomplete block designs and affine resolvable 
rectangular type partially balanced incomplete block designs 
with unequal block sizes are proposed with illustrations, 
which are based on the incidence matrices of the known 
affine resolvable balanced incomplete block designs.  
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I.  INTRODUCTION  

 
The concept of resolvability and affine resolvability was 

introduced by Bose [1] in the year 1942. A block design is 
said to be resolvable if the b  blocks each of size k  can 
be grouped into r resolution sets of rb / blocks each such 
that in each resolution set every treatment is replicated 
exactly once. Bose [1] proved that necessary condition for 
the resolvability of a BIBD is � ≥ � + � − 1. A resolvable 
block design is said to be affine resolvable if and only if 
� = � + � − 1 and any two blocks belonging to different 
resolution sets intersect in the same number, say, 

vkq /2
2 =  of treatments.  
The concept of resolvability and affine resolvability was 

generalized by Shirkhande and Raghavarao [2] to µ - 
resolvability and affine µ- resolvability. An incomplete 
block design with parameters �, � = �, � = �, � is said 
to be µ-resolvable if the b blocks can be divided into t sets 
of β each, such that each treatment occurs µ times in each 
set of blocks. Further, µ-resolvable incomplete block 
design is said to be affine µ-resolvable if every two 
distinct blocks from the same µ - resolution set intersect in 
the same number, say, q1, of treatments, whereas every 
two blocks belonging to different µ-resolution sets 
intersect in the same number, say, q2, of treatments. 
Necessary and sufficient condition for the µ - resolvable 
BIB design to be affine µ - resolvable with the block 
intersection numbers 1q  and 2q is )1/()1(1 −−= βµkq

rk −+= λ and vkkq // 2
2 == βµ . After this there has 

been a very rapid development in the area of experimental 
designs. Prominent work has been done by Bailey et al. 
[3], Banerjee et al. [4], Caliński et al. [5]-[8], Kageyama 
[9]-[12], Kageyama et al. [13], [14 ] and many others in 
this area of research; see [15]-[18]. 

The concept of µ - resolvability was further generalized 
to (µ�, µ�, … , µ�) resolvability by Kageyama [11] in 1976. 
A block design is said to be (µ�, µ�, … , µ�) – resolvable if 

the blocks can be separated into t sets of mi (≥ 2) blocks 
such that the set consisting of mi blocks contains every 
treatment exactly µ�(≥1) times, i.e. the set of mi blocks 
form a µ�- replication set of each treatment (i =  1, 2, … t). 
Furthermore, when tµµ == ....1 ,( µ= say), it is simply 

called µ - resolvable for � ≥ 1. We consider only 
those (µ�, µ�, … , µ�)–resolvable block designs which have 
constant block size within each set. The constant block 

size within the thl set is denoted by *lk for tl ,...,2,1= . A 

(µ�, µ�, … , µ�)-resolvable block design with a constant 
block size within each set will be said to be affine 
(µ�, µ�, … , µ�) - resolvable if: 

(i) For l  = 1,….,t every two distinct block from the 
thl set intersect in the same number say llq  of treatments. 

(ii)  For 'll ≠ =1,…..,t every block from the thl  set 

intersects every block of the 
th

l ' set in the same number, 
say 'll

q
 

of treatments. 

It is evident that for affine (µ�, µ�, … , µ�) – resolvable 
designs 

( ) ( )11 * −=− lllll kmq µ   and  '''
*

lllll
kmq µ=

.
 

 
In this paper we have proposed construction methods of 

affine resolvable rectangular type partially balanced 
incomplete block designs with unequal block sizes by 
using incidence matrix of an affine resolvable balanced 
incomplete block design. Kageyama [19] gave the 
construction method of affine resolvable designs with 
unequal block sizes which were based on the incidence 
matrices of the known affine resolvable balanced 
incomplete block design. He proved that these designs are 
variance balanced. In this paper we proposed that these 
constructed designs are efficiency balanced as well. 

Let us consider � treatments arranged in b blocks, such 
that the jth block contains kj experimental units and ith 
treatment appears ri times in the entire design, i = 1, 2, ..., 
� ; j = 1, 2, …, b. For any block design there exist a 
incidence matrix ][ ijnN =  of order bv× , where ijn

denotes the number of experimental units in the jth block 
getting the ith treatment. When ijn = 1 or 0 ∀ i and j, the 

design is said to be binary. Otherwise it is said to be 
nonbinary. In this paper we consider binary block designs 
only. The following additional notations are used 

[ ] '
21 ,....., bkkkk = is the column vector of block sizes, 

[ ] '
21 ,.....,, vrrrr =

 
 is the column vector of treatment 
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replication, =×bbK diag [ ]bkkk ,....., 21 , =×vvR diag 

[ ]vrrr ,.....,, 21 , =∑ ir ∑ jk n= is the total number of 

experimental units, with this rN b =1 and kN v =1' , where 

a1 is the 1×a  vector of ones. 

An equi-replicate, equi-block sized, incomplete design, 
which is also balance in the sense given above is called 
balanced incomplete block design, which is an 
arrangement of � symbols (treatment) into b sets (blocks) 
each containing (k < � ) distinct symbols, such that any 

pair of distinct symbols occurs in exactly � sets. Then it is 
easy to see that treatments occur in �(> �) sets. λ,,,, krbv  
are called parameters of the BIBD and the parameters 
satisfies the relations bkvr = , )1()1( −=− vkr λ  and vb ≥  

(Fisher’s inequality).  
A partially balanced incomplete block design based on 

an m-association scheme, with parameters ikrbv λ,,,,

),....,2,1( mi = , is a block design with v treatments and b 

blocks of size k each such that every treatment occurs in r 
blocks and two distinct treatments being  �! associate 
occur together in exactly �� blocks.  

Rectangular designs, introduced by Vartak [20], are 3-
associate PBIB designs based on a rectangular association 
scheme of "# treatments arranged in an nm×  rectangular 
array such that, with respect to each treatment, the first 
associate are the other  " − 1(= #� , say) treatments of 
the same column, the second associates are the other 
# − 1(= #�, say) treatments of the same row and the 
remaining (" − 1)(# − 1)(= #$, say) treatments are the 
third associates. For the definitions of PBIB design and 
rectangular design along with their combinatorial 
properties, refer, Raghavarao [21]. Rectangular designs 
have been studied by Banerjee, Bhagwandas and 
Kageyama [22], Bhagwandas, Banerjee and Kageyama 
[23] Kageyama and Sinha [24], Banerjee and Kageyama 
[25] and many others.   

Though there have been balanced designs in various 
senses (see [26], [6]). We will consider a balance design of 
the following types (i) Variance Balanced (ii) Efficiency 
Balanced. Out of these two main concepts of balancing, 
Rao [27] gives a necessary and sufficient condition for a 
general block design to be variance balanced. The concept 
of efficiency balanced was introduced by Jones [28] and 
the nomenclature “Efficiency Balanced” is due to Puri et 
al. [26] and Williams [29].The importance of variance-
balance and resolvability in the context of experimental 
planning is well known; the former yields optimal designs 
apart from ensuring simplicity in the analysis and the latter 
is helpful among other respects, in the recovery of 
interblock information. Also practical situations 
sometimes demand designs with varying block sizes (see 
[30]) and affine resolvable design with unequal replication 
numbers between sets of blocks; for a practical example, 
see Kageyama [ 11].  

Variance Balanced : A block design is called variance 
balanced if and only if it permits the estimation of all 
normalized treatment contrasts with the same variance. 
Let us consider the matrix '1NNKRC −−=  

Where R = diag  ( ),....., 21 vrrr , K = diag ( bkkk ,....., 21 ) 

Kageyama [10] showed that N is variance balanced 
block design if and only if  

1
1 1 'v v vC I

v
η  = − 

 
 

Where % is the unique non zero eigen value of C with 
multiplicity ( 1−v ), Iv is the vv×  identity matrix, 1v is 

1×v vector all of whose elements are one. 
Efficiency Balanced: A block design is called 

efficiency balanced if every contrast of treatment effects is 
estimated through the design with the same efficiency 
factor.  

Let us consider the matrix M0 given by Caliński [5] 

1 1
0

1
' 1 'vM R NK N r

n
− −= −                   (1) 

and since M0S = �S, where � is the unique non zero eigen 
value of M0 with multiplicity (& − 1) and M0  is given as 
(1). 

Caliński [5] showed that for such designs every 
treatment contrast is estimated with the same efficiency 
(1 − �) and N is an efficiency balanced design if and only 
if 

M0 = � ( '1
1

r
n

I vv − )    (2) 

Kageyama [10] proved that for the efficiency balanced  
block design N, eqn (2) is fulfilled if and only if  

  '1
)(1( rr

n
RC −−= µ ) 

 
II. C ONSTRUCTION OF DESIGN MATRIX : 

METHOD  I 
 
Let N be the bv×  incidence matrix of an affine 

resolvable balanced incomplete block design D with 
parameters � = 2�, � = 4� − 2, � = 2� − 1, �, � = � −
1  and cN  is incidence matrix of complement of the 

design D. Then the following incidence matrix *N  yields 
an affine resolvable rectangular type partially balanced 
incomplete block design *D  with unequal block sizes. 

















=

vvv
c

vvv
c

vvv
c

NNN

NNN

NNN

N

100

010

001
*   (3) 

In incidence matrix *N , v1  is the 1×v  unit vector all of 

whose elements are unity and v0 is the 1×v   zero vector 

all of whose elements are zero.  
The rectangular association scheme having "# 

treatments (in the present construction method  " = 2� 
and # = 3) can be arranged in a rectangular array of m 
rows and n columns displayed in the following manner

1 2 1 4 1

2 2 2 4 2

2 4 6

k k

k k

k k k

+ +
+ +

⋯

⋯

⋮ ⋮ ⋮

⋯   

(4)  
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Where #� = " − 1, #� = # − 1 and #$ = (" − 1)(# −
1). The resultant design is also affine resolvable as 

b = v + r − 1 and k� v-  is an integer.  
Theorem 2.1 :  The existence of an affine resolvable 

balanced incomplete block design with parameters 
� = 2�, � = 4� − 2, � = 2� − 1, �, � = � − 1 (where k is 
even) implies the existence of an affine resolvable 
rectangular type 3-associates partially balanced incomplete 

block design with parameters ,6* kv = =*b =− *,312 rk

12,23,2,3,26 *
2

*
1

*
2

*
1 −=−===− kkkkkkk λλ and 

13*
3 −= kλ ; having a rectangular association scheme of  

#� = 2� − 1, #� = 2, #$ = 2(2� − 1). 
Proof:  Consider an affine resolvable balanced 

incomplete block design D with parameters � = 2�, � =
4� − 2, � = 2� − 1, �, � = � − 1 and  /0 be the incidence 
matrix of the complement of the design D. Under the 
present method of construction, the design 1∗ yields the 

parameters ,6* kv = kkkrkb 3,26,312 *
1

** =−=−= and 

kk 2*
2 = , which are obvious. Amongk6 treatments a 

rectangular association scheme can be naturally defined as 
follows. These k6  treatments are arranged in a 

rectangular array of 2� rows and 3 columns such that first 
associates of any treatment 3 (say) are (2� − 1) 
treatments other than this treatment of the same column, 
the second associates are other 2 treatments in the same 
row and the remaining 2(2� − 1) treatments are the third 

associates of 3. Further, the parameters *iλ (i=1, 2, 3) can 

be determined as follows: Let us number the rows of*N as  
1,2, … ,2�, 2� + 1, … ,4�, 4� + 1, … ,6�. In the present 
construction method any ),( φθ pair, with the combinations 

of cN

N
 or 

N

N
 occurs as given below 

� � � �

































=

































=

−−

1

1

0

1

1

0

0

0

0

0

1

0

0

1

1

1
11

c

kkkk

N

N
        (i)              

  

� � � �

































=

































=

−−

0

0

1

0

0

1

1

1

0

0

1

0

0

1

1

1
11

N

N

kkkk

   (ii) 

(a) From structure given in (3), in the Ist partition
cN N N    , the inner product of any two rows of 

N or cN is(� − 1). So the value of *
1λ can be 

calculated as *
1λ =(� − 1) + (� − 1) + (� − 1) +

1 = 3� − 2. 
(b) From structure given in (i) and (ii), we can see that 

there is no contribution of first row of N with first row 

of cN , but the first row of  N is contributing with first 

row of N. So the value of *
2λ  can be calculated as*2λ

= 2� − 1. 
(c) From structure given in (i) and (ii), we can see that the 

inner product of first row of N with the ,4,...,3,2( k

,24 +k thk)6...,  row of cN is �  and inner product of 

first row of N with ,4,...,3,2( k ,24 +k thk)6..., row of 

N is ).1( −k  So the value of *
3λ

 
can be calculated as 

*
3λ =(� − 1) + � + � = 3� − 1. 

Here, 6�  treatments are arranged in a 32 ×k  
rectangular array such that, with respect to each treatment, 
the first associate are the other 2� − 1(= #�) treatments of 
the same column, the second associates are the other 
2(= #�) treatments of the same row and the remaining 
2(2� − 1)(= #$) treatments are the third associates. In the 
present method of construction the affine resolvability of 

the resultant design is easily shown as, 1*** −+= rvb , 
intersection within the resolution sets *),...,1(0 rlqll ==

 
and intersection between the resolution sets 

**
2

*
1 /' vkkq

ll
= ),...,1( *' rllk =≠= . This completes the 

proof. 
Example 2.2 : Let us consider an affine resolvable 

balanced incomplete block design with parameters 
� = 4, � = 6, � = 3, � = 2, � = 1 with incidence matrix N 
given through the blocks [(1,2), (3,4)], [(1,3), (2,4)], 
[(1,4), (2,3)] and /0 is the complement of incidence 
matrix N. Theorem 2.1 yields an affine resolvable 
rectangular type partially balanced incomplete block 

design with unequal block sizes and parameters ,12* =v  

,21* =b ,10* =r ,6*
1 =k ,4*

2 =k ,4*
1 =λ ,3*

2 =λ 5*
3 =λ . 

The incidence matrix of the resultant design is given as 
follows: 

*

1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0

1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0

0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0

0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0

0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0

0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0

1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0

1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1

1 0 0 1 0 1 0 1

N =

1 0 1 0 1 0 0 1 0 1 0 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1

0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The rectangular association scheme is written as 
  1 5  9 
  2 6 10 
  3 7 11 
  4 8 12 
In the above design 

* 12 10 1 21, 0( 1,...., 9),llb q l= + − = = =  
* 2 *

1 1( ) / 3( 1, ...,8)lq k v l= = = and 2/ **
2

*
1' == vkkq

ll
 

(5 ≠ 57 = 1, … . ,9). Hence the designs Constructed above 
also possess the property of affine resolvability. 
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III. C ONSTRUCTION OF DESIGN MATRIX : 
METHOD  II 

  
Kageyama [19] presented a method of constructing 

affine resolvable design with unequal block sizes. 
According to kageyama [19], if N be the bv×  incidence 
matrix of an affine resolvable balanced incomplete block 
design D with parameters kkrkbkv ,12,24,2 −=−== , 

1−= kλ and cN  is incidence matrix of complement of 
the design D. Then the following incidence matrix *N  

yields an affine resolvable variance balanced design *D  

with unequal block sizes and k2* =η . 









= c

vvv

vvv

NI

NI
N

10

01
*     (5) 

In incidence matrix *N , vI  is an vv×  identity matrix,

v1  is the 1×v  unit vector all of whose elements are unity 

and v0 is the 1×v  zero vector all of whose elements are 

zero. For the resolvability in design*D , the first resolution 

set is from 9:;
:;

<, second resolution set is from 

91; 0;
0; 1;

< and the remaining resolution sets can be formed 

by the original partition in the affine resolvable design D. 
Furthermore, the affine resolvability of the resultant 
design is easily shown, because of 1−+= rvb .Here we 
proved that the resultant design given in (5) is also 
efficiency balanced.  

Theorem 3.1. The existence of an affine resolvable 
balanced incomplete block design D with parameter

,2kv = ,24 −= kb ,12 −= kr ,k 1−= kλ implies the 

existence of an affine resolvable efficiency balanced block 
design with unequal block sizes and parameter kv 4* = ,

=*b k6 , 12* += kr , 2*1 =k , ,2*2 kk =  �∗ = �,>?? = 0(5 =
1, … , �∗),>�? = 1(1, … . , �∗),>�? = �(5 = 3, … , �∗), kq

ll
='  

(5 ≠ 57 = 3, … . , �∗) and )12/(1* += kµ . 

Proof:  Let N be the bv×  incidence matrix of an affine 

resolvable BIB design D and cN be the incidence matrix 
of complement of the design D. In the present method of 
construction, the design *D yields the parameters kv 4* = ,

kb 6* = , 12* += kr , ;2,2 *2*1 kkk == which are obvious. 

In the affine resolvable balanced incomplete block design 
D; any ( )φθ,  pair occurs in λ  blocks. Thus in the 

construction method given in (5), the frequency of ( )φθ,  

pair can be calculated as kk =+−= 11*λ . Here *b  blocks 

are separated into *r  resolution sets, the first resolution set 

contains v  blocks and the remaining resolution sets have 
only two blocks in each. Furthermore, the affine 
resolvability of the resultant design is easily shown as, 

krvb 61*** =−+= , intersection within the resolution sets 

),....,1(0 *rlqll == , intersection between first and other 

resolution sets ),....,1(1 *1 rlq l ==  and intersection 

between the resolution sets kq
ll

=' ),...,2,1( *
' rll =≠ . The 

matrix C of the design given in (5) is 
'1NNKRIC v

−−=  

The calculation of the efficiency can be done as follows 
( ) )(12'

vvvv IJkIkNN −++=  

( )vvvv IJ
k

k

k
I

k

k

k
NNK −







 −++






 −++=−

2

1

2

1

2

12

2

1

2

1'1  

( )
1 1 ' 1 1 2 1 1

2 2 2 2 1 v

k
R NK N I

k k k
− − − = + +  +     

( ) ( )1 1 1

2 2 2 1 vv v

k
J I

k k k

− + + −  +      
1 1 ' '1

1vR NK N r
n

− − − =
 

( ) ( ) ( )1 1 2 1 1 1 1 1

2 2 2 2 22 1 2 1v vv v

k k
I J I

k k k kk k

 − −   + + + + −    + +       

 
1 1 ' '1

1vR NK N r
n

− − − =
 

( ) ( ) ( )1 1 2 1 1 1 1 1

2 2 2 2 22 1 2 1v vv v

k k
I J I

k k k kk k

 − −   + + + + −    + +       
1

4 vvJ
k

−
 

]
4

1
[

12

1
0 vvv J

k
I

k
M −

+
=

 
which yields ( )

* 1
2 1k

µ = + . This completes the proof. 

Example 3.2: Let us consider an affine resolvable 
balanced incomplete block design with parameters 

3,4,7,14,8 ===== λkrbv  with incidence matrix N 
given through the blocks [(1,2,4,7), (0,3,5,6)], [(2,3,5,7), 
(1,4,6,0)], [(3,4,6,7), (2,5,0,1)], [(4,5,0,7), (3,6,1,2)], 
[(5,6,1,7), (4,0,2,3)], [(6,0,2,7), (5,1,3,4)], [(0,1,3,7), 

(6,2,4,5)] and  cN is the complement of incidence matrix 
N. Theorem 3.1 yields affine resolvable variance and 
efficiency balanced design with unequal block sizes and 
parameters 4,8,2,9,24,16 **2*1*** ====== λkkrbv . 

The incidence matrix of the resultant matrix is given as 
follows: 

























































=

101010101010101010000000

011010011001011001000000

010110100110011000100000

010101101001101000010000

100101011010011000001000

011001010110101000000100

100110010101101000000010

101001100101011000000001

010101010101010110000000

100101100110100101000000

101001011001100100100000

101010010110010100010000

011010100101100100001000

100110101001010100000100

011001101010010100000010

010110011010100100000001

*N

 

1
(2 1)

4 (2 1) vvk J
k k

− +
+
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The above structure is variance as well as efficiency 
balanced and the matrix C is given as 

]11)16/1([8 '
16 vvIC −= also *η = 8 and *µ = 1111.0  

 
IV. RESULTS AND DISCUSSION 

 
The following tables provide a list of affine resolvable 

designs with unequal block sizes for r ≤ 25; which can be 
obtained by using certain known affine resolvable 
balanced incomplete block designs. 

 
Table 1. For Method I 

S. 
No. 

*v
 

*b
 

*r
 

*
1k

 
*

2k
 

*
1λ

 
*

2λ
 

*
3λ

 

m n Ref. 
No.** 

1. 12 21 10 6 4 4 3 5 4 3 R(1) 
2. 24 45 22 12 8 8 7 11 8 3 R(15) 

 
Table 2. For Method II 

S. 
No. 

�∗ �∗ �∗ 
*1k

 
*2k

 

�∗ *η
 

�∗ Ref. No.**  

1 8 12 5 2 4 2 4 0.2 R(1) 
2 16 24 9 2 8 4 8 0.1111 R(15) 
3 24 36 13 2 12 6 12 0.769 R(36),MH(49) 
4 32 48 17 2 16 8 16 0.0588 R(53),MH(97) 
5 40 60 21 2 20 10 20 0.0476 MH(197) 
6 48 72 25 2 24 12 24 0.04 R*(217) 

** The symbols R (α), MH (α) and R* (α) denote the 
reference number α in Raghavarao [21], Marshal Halls 
[31] and Rao [32] list. 

 
V. CONCLUSION  

 
The results given in this paper produce affine resolvable 

rectangular type partially balanced incomplete block 
designs with unequal block sizes. In this research paper we 
have also shown that the affine resolvable designs with 
unequal block sizes are variance as well as efficiency 
balanced. Further there is a scope to propose different 
methods of construction to obtain affine resolvable 
designs, which are efficiency as well as variance balanced.  
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