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Emergent Non-Hermitian Contributions to the
Ehrenfest and Hellmann-Feynman Theorems
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Abstract — We point out that two of the most important
theorems of Quantum Mechanics, the Ehrenfest theone and
the Hellmann-Feynman theorem, lack — in their standrd
form — important information: there are cases wherenon-
Hermitian  boundary contributions emerge. These
contributions actually appear naturally, in order for the
above theorems to be valid and applicable (i.e. imultiply-
connected spaces), and this occurs for physical quiities that
are not represented by well-defined self-adjoint oprators
(such as the position operator in a periodic poterdl, or in
general Aharonov-Bohm configurations, either in re&or in
an arbitrary parameter-space, in the sense of Berfg
adiabatic and cyclic procedures). In this short nat, we report
modifications of these two theorems when such non-
Hermiticities appear, and we demonstrate how theyesolve
certain Quantum Mechanical paradoxes (most of them
having been noticed in the past as violations of éhso-called
Hypervirial theorem in Quantum Chemistry). This resolution
of paradoxes (essentially the re-establishment oppglicability
of the Ehrenfest theorem even in multiply-connectedpaces)
always proceeds through the appearance of -certain
generalized currents, in a theoretical picture withinteresting
structure (where a generalized continuity equationwith a
sink term shows up naturally).

Keywords Bloch Theorem, Ehrenfest Theorem,
Hellmann-Feynman Theorem, Non-Hermitian Boundary
Terms.
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information has to be considered. This becomesssacg
as the Hamiltonian operator itself might demonstrat
hidden non-Hermiticity, leading to erroneous resuts
i.e. in the Bloch crystal case, as we will see, nehwaive

use of the Hellmann-Feynman theorem may lead to the

erroneous conclusion that the slope of the eneepdd
must vanish!). Another example is an apparent axhdit
boundary contribution to the standard velocity eper,
that could transfer information between two systems
through an interface. In this paper we magnify achs

issues, and we show how these extra (non-Hermitian)

boundary contributions actually correct (and resplv
previously noticed paradoxes regarding these tinesrét
should be added that the non-Hermiticity discuseeithe
present article does not seem to have anything teith
the area of non-Hermitian Quantum Mechanics that ha
been developed in the last 2 decades after thenakmi
work of Bender and Boettcherf1pur non-Hermiticities
are all boundary-related and are emerging, as eppts
the ones in the new area of non-Hermitian Quantum
Mechanics that are preexisting and that all seebetof a
bulk-type.

[Il. EHRENFEST THEOREM

The total time derivative of the mean value of any
operator that depends on position or momentum bpera

and has explicit time-dependenB4T, p,t) can be written

Well-known and fundamental theorems of Quanturgs:

Mechanics, such as the Ehrenfest and the Hellmang-

Feynman theorems, are usually applied in the titeea
without considerations of their underlying limitats And

in the rare cases in which thaye scrutinized (i.e. cases
corresponding to operators that are not strictif- se

adjoint), they are practically labeled as inapgilegas i.e.
in multiply-connected spaces). Simply put, we h&rew

S (B(rpY)

g g (2

- dtM §Y) < at at
1)

This leads to the well-known Ehrenfest theorem of

guantum mechanics[2] (usually called like this wiliteis

applied for B=p (or for B=p+eA/c), and then it defines

B9) (¥ 20]) +(v| %)

that in the latter cases we can still make usehef tthe ‘force operator’, and giving the well-known oeity

theorems, if we are willing to accept boundary terimat

are usually thrown away after integratipramd we also M
show that these terms (a reflection of what coutd %
viewed as emergent non-Hermiticity) may even hide
important physical information. These theorems have

historically played a major role in the formulatiaf
Quantum Mechanics, the Ehrenfest theorem, for pkgm
defining the ‘velocity operator’ as well as the re’

operator, while the Hellmann-Feynman theorem beingg

useful in also defining a velocity in the crystabmentum
space, or, more generally, revealing informatiooulthe
slopes of the energy bands in the Brillouin Zonat B
application of these theorems always as innocerit isgs

usually assumed? The answer seems to be in théveega
boundary-related

There are cases where additional

operator V=i[H,7|/# when it is applied forB=r).
aking use of the-dependentSchrodinger equation we
ay write

a—L”>=—i—H|Lu> ano|<a—LP =i<Lu|HT
ot h ot| 7

for its complex conjugate. Substituting these iftp we
have

B0 D) (W1 B) +rel8) v B
=<w\%\w>+;‘l<H 9] B|) - (] HE ) +-(w] 1, B ¥)
2)
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Now, if H were Hermitian (with respect t& and If this equality is true for any volume then we oeer
BY), we clearly see that the result would be the iami the differential form of generalized continuity edgjon,

d /e, B that is exactly eq. (8). Note here thatpB /dt =0 andif
E<B(r’ p’t)> (v ‘ ‘LP> <LP[H’B]‘LP>' Inthe more Pyen IS time independent, i.& is a singleH-eigenstate,
general case, however we can rewrite (2) as: we have:
d -, _ o - L .
a<B(r. p.1)) = (W | ILP> <[H B)) o D.Jgen:lhw [H ,BI]LP:quS.Jgen:IE<[ H.B]), (10)
+i_[<|—|2q_,| |§| q_,> _<q_,||-|z|§| q_,ﬂ ' and d<|§>/ dt=0. This means that the time derivative of
m?

_ ~ _ _ ~ . mean value of any time independent operator cétied e
with M the kinematic momentumfl =p+eA(T)/ ¢, a single stationary state is always zero.

A bit more generally, if B is an invariant operator,

%:—i[H,BI]/h then 0.3, +dp /0t = 0. This is the

with A(F) the vector potential, minimally substituted in

H, andM? = p*-inell.Al c+2eAp & & A/ T

Substituting into (3) we get:
ginto (3) g Liouville equation. It describes the flow dfB (F, p,t))

d/s/. .
a<B(r, p’t)> (W ‘ ‘Lp> <[H BJ> through the surface (boundary of volulvewhere the

-%cﬁd%[mw*éw-w*w(éw)} @) system is considered). I (T, p,t) is a conserved

. | 0B
—£Id3r[(i.A)qJ*BLp+ Ai(qfﬁwﬂ guantity, then the source terbn=W¥ {E +E[H ,BI]}HJ
mc
For a specific component of the vector operatdf Z€ro, meaning that -
B (T, p.t) the above equation reads: ﬁ+'_[H B]= 036_3 = —I—[H B], (12)
ot h- ot a- Y

d _ 0 i - -

a(Eﬁ (T, p,t)>=<l+’|a—?|q-’>+g<[ H, 3]>‘<j‘> dSJe, (5), ie. B(F, p,t) must be an invariant operator[3]. On the
where the two volume integrals in (4) can be wnites Other hand, if the source term is nonze¥oz 0, then the
closed surface integrals (divergence theorem) om t@bove continuity equation describes the rate ofwflo
boundary of a generalized current defined as: 2 #0 of the quantity(B (T, p,t)) in the interior of the
- ih = - e -

= - = volumeV.

3. = Zm[mw BYW-W D(B,w)]+ mCAuf BY (6)

gel

This current has a form very similar to the familia 1. HELLMANN -FEYNMAN THEOREM
guantum probability current,
jprob =l[wiw* _q_,*iq_,]+i A|l+’|2, @) Eqg. (5) can be further modified if operatB acts in a
2m mc

parameter space [4] as a i.e. differential operdfowe
Wh'Ch_ would correspond to the special case P\)fz_l_ assign B with the operatorCl, that acts in parameter
(identity operator), and obeys the standard coityinu space Ri,R,,..}, we get the Hellmann-Feynman theorem
equation: [.J,, +0p/0t=0 with p the probability in a boundary-related generalized form:
density, p=%"# . In the more general case, for aByit E(Ij >: —l<i H>—¢déj (12)

_ - dt\ R 7\ TR gen 1
can be proved that the above generalized curdgnt

obeys a generalized continuity equation, thatotated by because[H DRJ =-LH . And if we consider only one

a nonvanising inhomogeneous (sink) term, namely ) _IEt
eigenstateW =e " |n), we haved< >/ dt=-i0.E/n

. ap en * i
0. t—==W {a—?*‘E[H ,3]}‘4’. (8) and the Hellmann-Feynman theorem (eq. (12)) besome

ot ~ - .-
_ ) _ _ _ O:E =(0.H) - inddS3,,, (13)
with p,, =W BW a generalized density. To prove this,

we consider the integral form of eq. (8) which @g €), with jgen :;—h[iw*iﬁw—wﬁ(igw)}'_mj 0. W
m

and upon integration in a specific volume of atitis we mc

get: A rigorous Mathematical Physics presentation (tghou
d o o8 discussion of domains of definitions of operataits )eof
a(Eﬂ (F.p)= <L“‘ ‘L“ [H B]) - dS..= this type of extra boundary contributions that show up

3 63 o in the Hellmann-Feynman theorem has been giverfin r
Id3ra(w*3w):J'dSrLP*ELP+%J'd3rLP*[H,B]LP—J'cF|D.Jgen [5].

(9)
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IV. EXAMPLES: d i m[ dv’ ,de}L
—(X)=—{([H, X} ——|d—— - —
(A) FREE PARTICLE a h<[ ) 2m|  dx dx
() in [, dw e dO®) ] () i [, d¥ ey, dP ]
Although it is rarely mentioned, one of the maig 2m ™ &~ ac | - m 2 mY o Y T T
consequences of the non-Hermitian boundary terms 0(16)

appears already in the simplest problem of quantum

L
mechanics the free particle (in a volum¥ with the Now, <p>=—ihfdxw*d—w and by using integration by
standard periodic boundary conditions) whose ° dx

Hamiltonian is H=p*/2m and eigenfunctions: parts we conclude to:
Ke )y 1 weT 4 fggws 9% _ F e 9%
r)= : izati = + - - -
w(F)=e®" /JV (box normalization). If we choose (P) 5 U ”0 ! ™~ IO - (17)
Use again integration by parts to get the second
B(Y, p,t) =T, which is clearly time independent, eq. (5ylerivative off’ with respect to x:

operator B(T,p,t) to be the position operator,

ives: _ AR 1A e dY 4
ges: ) () =-2]wf ], ZX(W Yoy dx)
—(X)y=—([H,x])~— @ dS| OW ¥ -wO( %) |, ink ink x
dt<> h<[ ]> 2m¢ [ ( )J +E.fdxxi(w*d—wj—E dxﬁiW—dwj
. . 29 dx dx) 2% d dx
with ([H,x])=-in(p,)/m=nk /m, and the second
" il e dv  dw*\]" & d2w d2w
term must be evaluated on the surfaces of the cube: =-— [M } +H x| Wr—-W +Idx W -
ot 2 0 dx dx )|, o dx dx
B W - 7 B () = —2KXE zvlg{)d“s[—z o 1] (18)
1 ) ) i (14) Combining (16) and (18) we find that:
:Vcﬁds[(—zn& x+1) i- 2ik, Xj- 20k, Xk = - 2ik; q

in ¢ d’w* d*w
—(X)=—— | dxq W ———-¥* 19
="l { ae deJ( )
Making use of the Schrodinger equation (for a seallar

This is true for any of the components Bffand of potential) we can eliminat&” in (19):
course only for a single eigenstate). Note that if we had d2y 2m
. — =-—[E-V(X]¥,

neglected the surface term in eq. (5), thung) / dt would A 2
not be zero, violating the condition that all meatues of 10 get:
time independent operators calculated in a sintdées d, . ij . s _
must also be time independent! (a paradox eartichin a(x} - _;ld”(_w[ E- YW+ [ B V) ¥)=0
[6] and which is also essentially what has beeicadtby 20
S“a”t“_”? ICi]hemlsts 7(as | a V|Iolat|on dOf the_mso-c_?lled It should be noted that the above shows the négexfsi

ypervirial theorem) [7]). It is also good to naithat, | including the non-Hermitian boundary terms in thse of

we choose B(7,p,t)=p the result is once againa ring threaded by a static magnetic flux (ie. an
Aharonov-Bohm configuration [8]), so that the theraris
valid. This is in contrast to the standard literatwn
Aharonov-Bohm rings, where it has been stated gee.
[9] for a driven ring), that the Ehrenfest theoré&mnot

which all together result mg{x) Ik Mk, (15)
dt m m

d(p)/ dt=0 but without the appearance of a non

Hermitian boundary term (here the reason being et
momentum operator is a good self-adjoint operator f

theseboundary conditions). valid in multiply-connected spaces.
The restoration of the above paradox can thereitse
(B) GENERAL EXAMPLE FOR ANY GAUGE be seen as a re-establishment of the “practical
POTENTIAL © AHARONOV -BOHM applicability” of the Ehrenfest theorem in multiply

connected space.
By following the above, the reader can actuallgfthe

. exact form of the non-Hermitian boundary term (aren
The fact that any mean value of a time-independegbnerally of the above discussed generalized d)rtieat

operator must not depend on time, can be gengallied  poqi5 the Ehrenfest theorem in the case of an Abaro
for any real gauge (and vector) potential. Herefin&  gonm ring (or, further, whenever the magnetic fisveven
consider for simplicity the cage=0, and examine the a time-dependent quantity). It must be noted thiatrion-
position operator in 1D (our method is valid foydime-  Hermitian boundary term depends explicity on the
independent operator, either differential or ofentform) enclosed flux (its value, therefore, in the abseotc¢he
flux being different compared to that in the presenf a
flux) — hence giving an alternative understandifighe

CONFIGURATIONS
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robustness of the Aharonov-Bohm effect (and thd-wel Now, making use of eq. (18) and Schrodinger’s

known fact that the flux “cannot be gauged way”). equation:
v__2m h2k? Dk
(C) A NOTE ON HELLMANN -FEYNMAN w=-—7| B~ V(%= om | U Ekdand
THEOREM IN THE BLOCH PROBLEM @
_2m n*
* = E-V(X- U +2 kg
Up to now, by dropping the above mentioned boundary h? ( ()9 2m J ’
(surface) terms, Hellmann-Feynman theorem (f%e arrive at the correct result:
differentiations with respect to a static paramé&jdrad to . L, . ,
be written in the form[11]; dE _[Woge 07 )] = np),  wk_h(p),
dE <dH> 21) dk m 2m o m m m
dk (24)

Notice however that, by taking as example a BlocHhat shows the consistency of the utilization @ thidden
electron,  whose Hamiltonian (in 1D) is: hon-Hermiticities”, discussed in the present papéth

H = p%/2m+V(%, with eigenfunction® =&y, (x), previously establlshed results.

k is the CryStal momentum anlﬂL is the pel’iodic cell (D) LlNEAR COMBINATION OF STATES
function, (21) results indE/ dk=0, namely, it predicts

that the energy bands must not depend on crystglx)/ dt may not be zero only in the case of a linear
momentum k. This contradicts the fact that if one

minimally substitutes crystal momenturk in the combination of states as it can be easily provedgusg.

Hamiltonian, (19): g
W
+hk 2 —_ - —_— P — *
H :%+V(x) , with eigenfunctions¥ =u, (x), dt X) 2m;[ dx{w dxe v dx J (25)
eq. (21) gives If ¥ is a single eigenstate, then eq. (25) is zero, as
_ _ 2 shown before. But if nowt is a linear combination of
dE/ dk=n({( p+rh K/ m =h( p,/ MK K w0, ctates. ie

the slope of the energy bands in a crystal. Thigphas —iEgt
because the non-Hermitian boundary term in eq. (13) LP:ZCne " CDn(x),then eq. (25) becomes:
coincides with zero, as we now show

[ingds.3,, = {"”"_“ u"i"“) 2|ku@} G=rzer Ge (k- Ejdxm*<x>¢<>x
o ax ok  9xX a0k d K|, 26

With A=-crk/ e. The above result is exactly zero, 33which is the correct result we obtain using eleragnt

each one of the terms appearing in is itself equaero, 4 antum mechanical methods. For example, consier t

becauseu, (x=0) =y (x=1). simple case of a particle in a quantum well (QWijthw

What is really happening here is tha / dk is always Wave function
non zero, and can be analytically obtained in full, \/7 n7rx
generality without the need of minimal substitutidyy ®() = sin L with L the length of QW and=1,2,3..,
directly using a modified Hellmann-Feynman theorengq. (26) then g|ves
containing our non-Hermitian boundary terms (e@)1

d 4inr 2 [l
eZmL —, 27
e G = 266 T | D)
dk dk d ( ) i i
with the constralnt:l -n=odd. In this case, the extra
_ p? boundary contribution is still important, and somiee
with H ‘%*'V(X) and ¥ =€y, (x) we have: closed patterns can be written, but it is a matiat we

d/d W currently leave to the reader.
W _[_‘Pj _dvdv =|uf* (i - 2xk) + ix(u* u- uu*)

dx{ dk ) dk dx V. CONTRIBUTIONS OF BOUNDARY TERMS TO
+2iku*ﬂ+ 0 d’u _ﬂjﬂ EHRENFEST AND HELLMANN -FEYNMAN
dk dxdk dk dx THEOREMS WHEN THE PARAMETER HAS
and dH / dk=0 as it should be!Substituting then in eq. ExpLicIT TIME DEPENDENCE
(22) we obtain:
dE n? 2 L L\ It is interesting to recall how the Hellmann-Feymma
@:_Zn[_ZM xk+ 'X(U u-ud )JO (23) theorem is further modified when parameters depmmd

time [13]. Additionally to the implicit time-deperdce
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through the parameters, we also ttdepend explicitly bulk-boundary correspondence in topologically—nimar_
on timet, i.e. H =H (F?(t),t). Starting with eq. (12): systems by way of an example (that may have wide

implications), application of this boundary term spin-
d/=\_ i/= . orbit coupling problems (to be presented in dataitef.
a<DR> = —E<DRH>—q§dSJgen

[13]) seems to show that these non-Hermitian boyrda
. contributions can play a crucial role on informatio

. d_od == . _— . ; :
with now — =—+R/[,, the material derivative, which transfer, through an interface, between a magragit a

non-magnetic material, that have been brought néaco.

takes into account changes with respect to timesadgnt
parameters, we have:

djmyv_ de _ (0 5= Vs _ 0: to -
dt(DR>=—|thB=—|(M+R.DRJAB=—|MAB—|R.DRAB, 1]
(28)

]

with A, = i<ER>. Using then nabla product rules, we get:[2
ROLA = ah[m]- R, (29 g
with B, =0, x A, and a
4

RA = (W RO, W) = (WS -2 |w)

dt ot

d E (30) (5]
=I<W|a l'IJ>_VB _;_VB 6]

with V, = i<w|%|w) and E =(W| H|W) . Combine (28),
Q
[

(29) and (30) to arrive at the result:

<i§H>=ihE—hQ—h§x B + hd dSJ,.,, (31)

gen?

with Q(F—{ t) =-0.\, 9% ihe “Berry electric field” and (ol
ot

o [11]
B, =0,xA, the Berry curvature, defined through[lz]

potentials: AS is the Berry vector potential (the well- 3]

known Berry connection) and/, is a “Berry scalar

potential”. It is interesting that equation (31)ncée
interpreted as describing the Lorentz force (inapeater-
space) acting on a particle of chardewhich moves in
the presence of scalar potentidsandV,, and a vector

potential AS (although the contribution of non-Hermitian

boundary terms is generally still present and qfasate
importance). All quantities are defined through fla#
time dependent wavefunction, while, in the adiabhutnit
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