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Abstract – We point out that two of the most important 

theorems of Quantum Mechanics, the Ehrenfest theorem and 
the Hellmann-Feynman theorem, lack – in their standard 
form – important information: there are cases where non-
Hermitian boundary contributions emerge. These 
contributions actually appear naturally, in order for the 
above theorems to be valid and applicable (i.e. in multiply-
connected spaces), and this occurs for physical quantities that 
are not represented by well-defined self-adjoint operators 
(such as the position operator in a periodic potential, or in 
general Aharonov-Bohm configurations, either in real or in 
an arbitrary parameter-space, in the sense of Berry’s 
adiabatic and cyclic procedures). In this short note, we report 
modifications of these two theorems when such non-
Hermiticities appear, and we demonstrate how they resolve 
certain Quantum Mechanical paradoxes (most of them 
having been noticed in the past as violations of the so-called 
Hypervirial theorem in Quantum Chemistry). This resolution 
of paradoxes (essentially the re-establishment of applicability 
of the Ehrenfest theorem even in multiply-connected spaces) 
always proceeds through the appearance of certain 
generalized currents, in a theoretical picture with interesting 
structure (where a generalized continuity equation with a 
sink term shows up naturally). 

 

Keywords – Bloch Theorem, Ehrenfest Theorem, 
Hellmann-Feynman Theorem, Non-Hermitian Boundary 
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I.  INTRODUCTION  
 

Well-known and fundamental theorems of Quantum 
Mechanics, such as the Ehrenfest and the Hellmann-
Feynman theorems, are usually applied in the literature 
without considerations of their underlying limitations. And 
in the rare cases in which they are scrutinized (i.e. cases 
corresponding to operators that are not strictly self-
adjoint), they are practically labeled as inapplicable (as i.e. 
in multiply-connected spaces). Simply put, we here show 
that in the latter cases we can still make use of the 
theorems, if we are willing to accept boundary terms that 
are usually thrown away after integrations; and we also 
show that these terms (a reflection of what could be 
viewed as emergent non-Hermiticity) may even hide 
important physical information. These theorems have 
historically played a major role in the formulation of 
Quantum  Mechanics, the Ehrenfest theorem, for example, 
defining the ‘velocity operator’ as well as the ‘force’ 
operator, while the Hellmann-Feynman theorem being 
useful in also defining a velocity in the crystal momentum 
space, or, more generally, revealing information about the 
slopes of the energy bands in the Brillouin Zone. But is 
application of these theorems always as innocent as it is 
usually assumed? The answer seems to be in the negative. 
There are cases where additional boundary-related 

information has to be considered. This becomes necessary 
as the Hamiltonian operator itself might demonstrate 
hidden non-Hermiticity, leading to erroneous results (as 
i.e. in the Bloch crystal case, as we will see, where naive 
use of the Hellmann-Feynman theorem may lead to the 
erroneous conclusion that the slope of the energy bands 
must vanish!). Another example is an apparent additional 
boundary contribution to the standard velocity operator, 
that could transfer information between two systems 
through an interface. In this paper we magnify on such 
issues, and we show how these extra (non-Hermitian) 
boundary contributions actually correct (and resolve) 
previously noticed paradoxes regarding these theorems. It 
should be added that the non-Hermiticity discussed in the 
present article does not seem to have anything to do with 
the area of non-Hermitian Quantum Mechanics that has 
been developed in the last 2 decades after the seminal 
work of Bender and Boettcher[1]; our non-Hermiticities 
are all boundary-related and are emerging, as opposed to 
the ones in the new area of non-Hermitian Quantum 
Mechanics that are preexisting and that all seem to be of a 
bulk-type. 

 
II.  EHRENFEST THEOREM  

 
The total time derivative of the mean value of any 

operator that depends on position or momentum operator 

and has explicit time-dependence ( )r, ,B p t
� � �

 can be written 

as: 

( )r, ,
d d B

B p t B B B
dt dt t t t

∂Ψ ∂ ∂Ψ= Ψ Ψ = Ψ + Ψ Ψ + Ψ
∂ ∂ ∂

�
� � � �� �  

(1) 
This leads to the well-known Ehrenfest theorem of 

quantum mechanics[2] (usually called like this when it is 

applied for B
�

= p
�

 (or for B=p+eA/c), and then it defines 

the ‘force operator’, and giving the well-known velocity 

operator [ ], /v i H r=� �
ℏ  when it is applied for B

�
= r
�

). 

Making use of the t-dependent Schrodinger equation we 
may write  

i
H

t

∂Ψ = − Ψ
∂ ℏ

 and †i
H

t

∂Ψ = Ψ
∂ ℏ

 

for its complex conjugate. Substituting these into (1) we 
have 

( )r, ,

,

d B i i
B p t H B BH

dt t

B i i i
H B HB H B

t

∂= Ψ Ψ + Ψ Ψ − Ψ Ψ
∂

∂
 = Ψ Ψ + Ψ Ψ − Ψ Ψ + Ψ Ψ ∂

�
� � �� �

ℏ ℏ
�

� � �

ℏ ℏ ℏ

  

(2) 
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Now, if H were Hermitian (with respect to Ψ  and 

BΨ
�

), we clearly see that the result would be the familiar 

( )r, , ,
d B i

B p t H B
dt t

∂
 = Ψ Ψ + Ψ Ψ ∂

�
� �� �

ℏ
. In the more 

general case, however, we can rewrite (2) as: 

( )

2 2

r, , ,

2

d B i
B p t H B

dt t
i

B B
m

∂
 = Ψ Ψ +  ∂

 + Π Ψ Ψ − Ψ Π Ψ 

�
� �� �

ℏ

� �

ℏ

,  (3) 

with Π
�

 the kinematic momentum: ( ) /p eA r cΠ = +
�� � �

, 

with ( )A r
� �

  the vector potential, minimally substituted  in 

H ,  and 2 2 2 2 2. / 2 . / /p i e A c eA p c e A cΠ = − ∇ + +
� �� �

ℏ . 
Substituting into (3) we get: 

( )

( )

( ) ( )

3 2 * * 2

3 * *

r, , ,

2

. .

d B i
B p t H B

dt t
i

d r B B
m

e
d r A B A B

mc

∂
 = Ψ Ψ +  ∂

 − ∇ Ψ Ψ − Ψ ∇ Ψ 

 − ∇ Ψ Ψ + ∇ Ψ Ψ
 

∫

∫

�
� �� �

ℏ

� �ℏ

� �� � � �

�   (4) 

For a specific component of the vector operator 

( )r, ,lB p t
� �

the above equation reads: 

( ) [ ]r, , , .Jl
l l gen

Bd i
B p t H B dS

dt t

∂
= Ψ Ψ + −

∂ ∫
� �� �

ℏ
�  (5), 

where the two volume integrals in (4) can be written as  
closed surface integrals (divergence theorem) on the 
boundary of a generalized current defined as: 

( )* * *J
2gen l l l

i e
B B A B

m mc
 = ∇Ψ Ψ − Ψ ∇ Ψ + Ψ Ψ 

�� � �ℏ
 (6) 

This current has a form very similar to the familiar 
quantum probability current,  

2* *J
2prob

i e
A

m mc
 = Ψ∇Ψ − Ψ ∇Ψ + Ψ 

�� � �ℏ
, (7) 

which would correspond to the special case of 1lB =  
(identity operator), and obeys the standard continuity 

equation: . / 0probJ p t∇ + ∂ ∂ =
� �

 with p the probability 

density, *p Ψ Ψ= . In the more general case, for any Bl, it 

can be proved that the above generalized current Jgen

�
 

obeys a generalized continuity equation, that is violated by 
a nonvanising inhomogeneous (sink) term, namely 

[ ]*.J ,gen l
gen l

p B i
H B

t t

∂ ∂ ∇ + = Ψ + Ψ ∂ ∂ 

� �

ℏ
, (8) 

with *
gen lp B= Ψ Ψ  a generalized density. To prove this, 

we consider the integral form of eq. (8) which is eq. (5), 
and upon integration in a specific volume of all terms we 
get: 

( ) [ ]

( ) [ ]3 * 3 * 3 * 3

r, , , .J

, .J

l
l l gen

l
l l gen

d B i
B p t H B dS

dt t
B i

d r B d r d r H B d r
t t

∂= Ψ Ψ + − ⇒
∂

∂ ∂Ψ Ψ = Ψ Ψ + Ψ Ψ − ∇
∂ ∂

∫

∫ ∫ ∫ ∫

� �� �

ℏ

� �

ℏ

�

 (9) 

If this equality is true for any volume then we recover 
the differential form of generalized continuity equation, 
that is exactly eq. (8). Note here that, if / 0lB t∂ ∂ =  and if 

genp  is time independent, i.e. Ψ is a single H-eigenstate, 

we have: 

[ ] [ ]*.J , .J ,gen l gen l

i i
H B dS H B∇ = Ψ Ψ ⇒ =∫

�� � �

ℏ ℏ
� , (10) 

and / 0d B dt =
�

. This means that the time derivative of 

mean value of any time independent operator calculated in 
a single stationary state is always zero.  
A bit more generally, if lB  is an invariant operator,  

[ ], /l
l

B
i H B

t

∂
= −

∂
ℏ  then .J / 0gen tρ∇ + ∂ ∂ =

� �
. This is the 

Liouville equation. It describes the flow of ( )r, ,lB p t
� �

 

through the surface (boundary of volume V where the 

system is considered). If ( )r, ,lB p t
� �

 is a conserved 

quantity, then the source term [ ]* ,l
l

B i
H B

t

∂ Σ = Ψ + Ψ ∂ ℏ
 

is zero, meaning that 

[ ] [ ], 0 ,l l
l l

B Bi i
H B H B

t t

∂ ∂
+ = ⇒ = −

∂ ∂ℏ ℏ
, (11) 

i.e. ( )r, ,lB p t
� �

 must be an invariant operator[3]. On the 

other hand, if the source term is nonzero, 0Σ ≠ , then the 
above continuity equation describes the rate of flow 

0Σ ≠  of the quantity ( )r, ,lB p t
� �

 in the interior of the 

volume V. 
 

III.  HELLMANN -FEYNMAN THEOREM  
 
Eq. (5) can be further modified if operator lB  acts in a 

parameter space [4] as a i.e. differential operator. If we 

assign lB  with the operator 
R

∇ �

�
 that acts in parameter 

space {R1,R2,…}, we get the Hellmann-Feynman theorem 
in a boundary-related generalized form: 

.JgenR R

d i
H dS

dt
∇ = − ∇ − ∫� �

�� � �

ℏ
� ,  (12) 

because ,
R R

H H ∇ = −∇ 
� �

� �
. And if we consider only one  

eigenstate, 
iEt

e n
−

Ψ = ℏ , we have / /
R R

d dt i E∇ = − ∇� �

� �
ℏ  

and the Hellmann-Feynman theorem  (eq. (12)) becomes: 

.JgenR R
E H i dS∇ = ∇ − ∫� �

�� � �
ℏ� ,  (13) 

with ( )* * *J
2gen R R R

i e
A

m mc
 = ∇Ψ ∇ Ψ − Ψ ∇ ∇ Ψ + Ψ ∇ Ψ
 

� � �

�� � � � � �ℏ
. 

A rigorous Mathematical Physics presentation (through 
discussion of domains of definitions of operators etc.) of 
this type of extra boundary contributions that can show up 
in the Hellmann-Feynman theorem has been given in ref. 
[5]. 
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IV.   EXAMPLES :   
(A) FREE PARTICLE  

 
Although it is rarely mentioned, one of the main 

consequences of the non-Hermitian boundary terms 
appears already in the simplest problem of quantum 
mechanics: the free particle (in a volume V with the 
standard periodic boundary conditions) whose 
Hamiltonian is 2 / 2H p m=  and eigenfunctions: 

( ) . /ik rr e VΨ =
� �

�
 (box normalization).  If we choose 

operator ( )r, ,B p t
� � �

 to be the position operator, 

( )r, ,B p t r=
� � � �

, which is clearly time independent, eq. (5) 

gives: 

[ ] ( )* *, x .
2

d i i
x H dS x x

dt m
 = − ∇Ψ Ψ − Ψ ∇ Ψ ∫
� � �ℏ

ℏ
� ,  

with [ ], x / /x xH i p m k m= − =ℏ ℏ , and the second 

term must be evaluated on the surfaces of the cube: 

( )

( )

* *
ˆ2 1 ˆ. 2

1 ˆˆ ˆ. 2 1 2 2 2x y z x

ikx i
x x dS ikx i

V V

dS ik x i ik xj ik xk ik
V

− +
 ∇Ψ Ψ − Ψ ∇ Ψ = ⇒ − + 

 = − + − − = − 

∫

∫

�
��� �

�

�

�

 (14) 

which all together result in: 0x xk kd
x

dt m m
= − =ℏ ℏ

.  (15) 

 This is true for any of the components of r
�

(and of 

course only for a single eigenstate). Note that if we had 

neglected the surface term in eq. (5), then /d x dt  would 

not be zero, violating the condition that all mean values of 
time independent operators calculated in a single state 
must also be time independent! (a paradox earlier noted in 
[6] and which is also essentially what has been noticed by 
Quantum Chemists (as a violation of the so-called 
Hypervirial theorem) [7]). It is also good to notice that, if 

we choose ( )r, ,B p t p=
� � � �

 the result is once again 

/ 0d p dt=�
 but without the appearance of a non-

Hermitian boundary term (here the reason being that the 
momentum operator is a good self-adjoint operator for 
these boundary conditions). 

 
(B) GENERAL EXAMPLE FOR ANY GAUGE 

POTENTIAL : AHARONOV -BOHM 

CONFIGURATIONS  
 
The fact that any mean value of a time-independent 

operator must not depend on time, can be generally proved 
for any real gauge (and vector) potential. Here we first 

consider for simplicity the case 0A=
�

, and examine the 
position operator in 1D (our method is valid for any time-
independent operator, either differential or of other form) 

[ ]

( )

*
*

0

* *
2*

00

,
2

*
2 2

L

L L

d i i d d
x H x

dt m dx dx

p pd xi d i d d
x x x

m m dx dx m m dx dx

 Ψ Φ= − Φ − Ψ 
 

Ψ   Ψ Ψ Ψ= − Ψ − Ψ = − Ψ − Ψ − Ψ   
  

ℏ

ℏ

ℏ ℏ

 (16) 

Now, 
0

*
L d

p i dx
dx

Ψ= − Ψ∫ℏ  and by using integration by 

parts we conclude to: 

2

0
0 0

*
*

2

L LLi d d
p dx dx

dx dx

 Ψ Ψ = − Ψ + Ψ − Ψ  
 

∫ ∫
ℏ

 (17) 

Use again integration by parts to get the second 
derivative of Ψ with respect to x: 

2

0

0 0

2 2
2

2 2
0

00

*
*

2 2

*
*

2 2

* *
* *

2

L

L L

L LL

i i d d
p x

dx dx

i d d i d d
dxx dxx

dx dx dx dx

i d d d d
x dxx

dx dx dx dx

Ψ Ψ  = − Ψ − Ψ − Ψ    

Ψ Ψ   + Ψ − Ψ   
   

   Ψ Ψ Ψ Ψ  = − Ψ + Ψ − Ψ + Ψ − Ψ            

∫ ∫

∫

ℏ ℏ

ℏ ℏ

ℏ

 (18) 
Combining (16) and (18) we find that: 

2 2

2 2
0

*
*

2

Ld i d d
x dxx

dt m dx dx

 Ψ Ψ= − Ψ − Ψ 
 

∫
ℏ

 (19) 

Making use of the Schrodinger equation (for a real scalar 
potential) we can eliminate ′′Ψ in (19): 

[ ]
2

2 2

2
( )

d m
E V x

dx

Ψ = − − Ψ
ℏ

, 

to get: 

[ ] [ ]( )
0

( ) * * ( ) 0
Ld i

x dxx E V x E V x
dt

= − −Ψ − Ψ +Ψ − Ψ =∫
ℏ

 

(20) 
It should be noted that the above shows the necessity of 

including the non-Hermitian boundary terms in the case of 
a ring threaded by a static magnetic flux (i.e. an 
Aharonov-Bohm configuration [8]), so that the theorem is 
valid. This is in contrast to the standard literature on 
Aharonov-Bohm rings, where it has been stated (i.e. see 
[9] for a driven ring), that the Ehrenfest theorem is not 
valid in multiply-connected spaces. 

The restoration of the above paradox can therefore also 
be seen as a re-establishment of the “practical 
applicability” of the Ehrenfest theorem in multiply-
connected space. 

By following the above, the reader can actually find the 
exact form of the non-Hermitian boundary term (or more 
generally of the above discussed generalized current) that 
heals the Ehrenfest theorem in the case of an Aharonov-
Bohm ring (or, further, whenever the magnetic flux is even 
a time-dependent quantity). It must be noted that this non-
Hermitian boundary term depends explicitly on the 
enclosed flux (its value, therefore, in the absence of the 
flux being different compared to that in the presence of a 
flux) – hence giving an alternative understanding of the 



  

 

Copyright © 2016 IJEIR, All right reserved 
251 

 International Journal of Engineering Innovation & R esearch  
Volume 5, Issue 4, ISSN: 2277 – 5668 

robustness of the Aharonov-Bohm effect (and the well-
known fact that the flux “cannot be gauged way”). 

 
(C) A NOTE ON HELLMANN -FEYNMAN 
THEOREM IN THE BLOCH PROBLEM  

 
Up to now, by dropping the above mentioned boundary 

(surface) terms, Hellmann-Feynman theorem (for 
differentiations with respect to a static parameter k) had to 
be written in the form[11]: 

dE dH

dk dk
=  (21) 

Notice however that, by taking as example a Bloch 
electron, whose Hamiltonian (in 1D) is: 

2 / 2 ( )H p m V x= + , with eigenfunctions ( )eikx
ku xΨ = , 

k  is the crystal momentum and ku  is the periodic cell 

function, (21) results in / 0dE dk= , namely, it predicts 
that the energy bands must not depend on crystal 
momentum k. This contradicts the fact that if one 
minimally substitutes crystal momentum k in the 
Hamiltonian,  

( )2

( )
2

p k
H V x

m

+
= +

ℏ
, with eigenfunctions ( )ku xΨ = , 

eq. (21) gives 

( ) 2/ / / / 0
uu

dE dk p k m p m k m= + = + ≠ℏ ℏ ℏ ℏ , 

the slope of the energy bands in a crystal. This happens 
because the non-Hermitian boundary term in eq. (13) 
coincides with zero, as we now show 

2 *
* *

0

.J 2
2

L

gen

u u u u
i dS u iku

m x k x k k

 ∂ ∂ ∂ ∂ ∂ − = − +  ∂ ∂ ∂ ∂ ∂  
∫
� � ℏ

ℏ�
 

With /A c k e= − ℏ . The above result is exactly zero, as 
each one of the terms appearing in is itself equal to zero, 
because ( ) ( )0k ku x u x L= = = . 

What is really happening here is that /dE dk  is always 
non zero, and can be analytically obtained in full 
generality without the need of minimal substitution, by 
directly using a modified Hellmann-Feynman theorem 
containing our non-Hermitian boundary terms (eq. (13)): 

2 *
*

0
2

L
dE dH d d d d

dk dk m dx dk dk dx

 Ψ Ψ Ψ = − Ψ −  
  

ℏ
 (22) 

with 
2

( )
2

p
H V x

m
= +  and ( )eikx

ku xΨ =  we have: 

( ) ( )
*

2* *

2
*

2 *

*
2 *

d d d d
u i xk ix u u uu

dx dk dk dx

du d u du du
iku u

dk dxdk dk dx

Ψ Ψ Ψ  ′ ′Ψ − = − + − 
 

+ + −

 

and / 0dH dk =  as it should be!  Substituting then in eq. 
(22) we obtain: 

( )
2

2 *

0
2 *

2

LdE
u xk ix u u uu

dk m
 ′ ′= − − + −
 

ℏ
 (23) 

Now, making use of eq. (18) and Schrodinger’s 
equation: 

( )
2 2

2

2
2

2

m k
u E V x u i ku

m

 ′′ ′= − − − − 
 

ℏ

ℏ
and 

( )
2 2

2

2
* * 2 *

2

m k
u E V x u i ku

m

 ′′ ′= − − − + 
 

ℏ

ℏ
, 

we arrive at the correct result: 

( )
2 2 2

2 *

0

*
2

L

u
p pdE kx i k

u x u u uu
dk m m m m m

Ψ ′ ′= − − = + = 
 

ℏ ℏℏ ℏ ℏ

 (24) 
that shows the consistency of the utilization of the “hidden 
non-Hermiticities”, discussed in the present paper, with 
previously established results. 
 

 (D) LINEAR COMBINATION OF STATES 
 

/d x dt  may not be zero only in the case of a linear 

combination of states as it can be easily proved using eq. 
(19): 

2 2

2 2
0

*
*

2

Ld i d d
x dxx

dt m dx dx

 Ψ Ψ= − Ψ − Ψ 
 

∫
ℏ

 (25) 

If Ψ is a single eigenstate, then eq. (25) is zero, as 
shown before. But if now Ψ is a linear combination of 
states, i.e. 

( )
niE t

n n
n

C e x
−

Ψ = Φ∑ ℏ , then eq. (25) becomes: 

( )
( )

, 0

* *(x) ( )
l nE E t L

i

l n n l l n
n l

d i
x C C e E E dxx x

dt

−

= − Φ Φ∑ ∫ℏ

ℏ
, 

(26) 
which is the correct result we obtain using elementary 
quantum mechanical methods. For example, consider the 
simple case of a particle in a quantum well (QW), with 
wave function 

2
( ) sinn

n x
x

L L

πΦ =  with L the length of QW and n=1,2,3..,  

Eq. (26) then gives: 

( )
2

2 2
2

2
* 2

2 2
,

4 i l n t
mL

l n
n l

d i nl
x C C e

dt mL l n

ππ −  =  − 
∑

ℏ

ℏ
, (27) 

with the constraint: l n odd− = . In this case, the extra 
boundary contribution is still important, and some nice 
closed patterns can be written, but it is a matter that we 
currently leave to the reader. 
 
V.  CONTRIBUTIONS OF BOUNDARY TERMS TO 

EHRENFEST AND HELLMANN -FEYNMAN 
THEOREMS WHEN THE PARAMETER HAS 

EXPLICIT TIME DEPENDENCE 
 
It is interesting to recall how the Hellmann-Feynman 

theorem is further modified when parameters depend on 
time [13]. Additionally to the implicit time-dependence 
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through the parameters, we also let H depend explicitly 

on time t, i.e. ( )( ),H H R t t=
�

. Starting with eq. (12): 

.JgenR R

d i
H dS

dt
∇ = − ∇ − ∫� �

�� � �

ℏ
�  

with now .
R

d
R

dt t

•∂= + ∇
∂

�

� �
, the material derivative, which 

takes into account changes with respect to time-dependent 
parameters,  we have: 

. .B B B BR R R

d d
i A i R A i A i R A

dt dt t t

• • ∂ ∂∇ = − = − + ∇ = − − ∇ ∂ ∂ 
� � �

� � � �� � � � �
,  

(28) 
with B R

A i= ∇ �

� �
.  Using then nabla product rules, we get: 

. .B B BR R
R A R A R B
• • • 

∇ = ∇ − × 
 

� �

� �� � � � � �
 , (29) 

with B BR
B A= ∇ ×�

�� �
 and  

. .B R

B B

d
R A i R i

dt t
d E

i V V
dt

• • ∂= Ψ ∇ Ψ = Ψ − Ψ
∂

= Ψ Ψ − = −

�

�� � �

ℏ

 (30) 

with BV i
t

∂= Ψ Ψ
∂

 and E H= Ψ Ψ . Combine (28), 

(29) and (30) to arrive at the result: 

.JB genR R
H E R B i dS

•

∇ = ∇ − Ω − × + ∫� �

�� � � � � �
ℏ ℏ ℏ� , (31) 

with ( ), B
BR

A
R t V

t

∂Ω = −∇ −
∂

�

�
� �

 the “Berry electric field” and 

B BR
B A= ∇ ×�

�� �
 the Berry curvature, defined through 

potentials: BA
�

 is the Berry vector potential (the well-

known Berry connection) and BV  is a “Berry scalar 
potential”. It is interesting that equation (31) can be 
interpreted as describing the Lorentz force (in parameter-
space) acting on a particle of charge -ℏ which moves in 
the presence of scalar potentials E  and BV , and a vector 

potential BA
�

 (although the contribution of non-Hermitian 
boundary terms is generally still present and of separate 
importance). All quantities are defined through the full 
time dependent wavefunction, while, in the adiabatic limit 

0R
•

→
�

, they reduce toB R R
A i i n n= Ψ ∇ Ψ = ∇� �

� � �
 and 

0BV =  (the standard quantities in Berry’s seminal paper 

[11]). In the general dynamic case, the above “emergent 
Electromagnetism” (which, incidentally, can also 
incorporate Dirac “magnetic” monopoles (always in 
parameter-space) associated to the singularities of the 
Berry curvature) is expected to demonstrate a wealth of 
behaviors; in particular “Berry tangles” may be expected, 
by analogy to other areas with real magnetic fields with 
nonzero Gauss linking number or “magnetic helicity” [12]. 
This is a study that we are planning to undertake, with an 
eye of possible connection of the non-Hermitian boundary 
contributions presented in this paper to the well known 

bulk-boundary correspondence in topologically-nontrivial 
systems; by way of an example (that may have wide 
implications), application of this boundary term in spin-
orbit coupling problems (to be presented in detail in ref. 
[13]) seems to show that these non-Hermitian boundary-
contributions can play a crucial role on information 
transfer, through an interface, between a magnetic and a 
non-magnetic material, that have been brought to contact. 
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