Supplying the Energy Demand for a Home With a Wind Turbine in the City Center of Tokat

Volkan KARACA*, Hakan ÇOBAN, Sadık ÖNAL, Mustafa Tufan ALTUNOK
email id: volkan.karaca@gop.edu.tr*, hakancoban@gop.edu.tr, sadik.onal@gop.edu.tr, tufan.altunok@gop.edu.tr

*Corresponding author

Abstract – The wind energy, which causes air movements in the atmosphere and wave movements in the seas, can be transformed into kinetic and mechanical energy. The wind speed varies between 5.5 m/s and 7 m/s on average per year in Tokat province. Although this is not sufficient for a perfect wind energy production center, systems can be developed that can eliminate the average energy requirement of a home. In this study, the selection of the wind turbine that can provide a home need in Tokat province center was made and the system cost to be installed was calculated. When the turbine is selected, the daily energy requirement of the house is calculated. In this direction, the average wind turbine power required to meet the needs of the house has been determined. The power curves of the turbines were also examined to determine the maximum power output. The factors that decrease the efficiency of wind turbines with low yield rate were examined and appropriate turbine design was realized in Tokat provincial center conditions. The energy requirement of a household with an average daily energy requirement of 6 kWh to 7 kWh in the city center with an average output power of 5kW with three blades, a blade diameter of 5.6m, a pole length of 12m, a production start speed of 3 m/s turbine design has been realized. In addition, it has been determined that the cost of the system to be installed in Tokat province varies between 45.000TL and 55.000TL on average depending on the type of material to be used.

Keywords – Wind Turbine, Renewable Energy, Tokat Region.

I. INTRODUCTION

Today, private or legal entities have turned to renewable energy sources. One of the most common types of alternative energy sources is wind energy. The wind energy potential in Turkey is quite high. A lot of work has been done in this regard. In these studies, the potentials of the winds are generally examined and the wind turbines are selected in some areas. Some of these studies are listed below.

İsmail H. Altış studied the energy sources in Turkey and the potential of these sources[1].

İbrahim Atlıgan examined the potential of our country and determined its position according to the developed and developing countries[2].

In the study conducted by Mehmet Bilgili and colleagues, the potential of wind energy in the Akhisar, Bababurnu, Belen, Daşca, Foça, Gelendost, Gelibolu, Göçekada and Söke parts of the south, southwest and west coasts of Turkey were analyzed and analyzed statistically[3].

Faruk Köse and Muammer Özgören evaluated the data obtained from the measurements made at the measurement station established at Selçuk University Alaaddin Keykubat Campus region and the potential of wind energy of the region was determined[4].

Uğur Yıldırım and his colleagues examined statistically the potential of wind energy in Niğde[5].

İlker Mert and Cuma Karakuş have examined the potential of wind energy in the Antakya region and have concluded that the turbines to be installed in the region will be efficient in terms of electric energy production[6].

Mehmet Kurban and his colleagues examined the potential of wind energy in the region with the wind measurement pole set at 30 m height on the campus of Anadolu University on 2 September[7].

Vezir Ayhan and his colleagues performed modeling and turbine manufacturing with wind turbine calculations[8].

Engin Çetin and his colleagues have made a situation determination in the electricity energy production plants established in Denizli[9].

Nida Nurbay and Ali Çınar examined the characteristics of the wind turbines on the market and determined their advantages and disadvantages[10].

In his thesis study, Seyit Ahmet Akdağ examined the use of the Weibull distribution in the potential and economic analysis of wind energy[12].

Cihan Gökçöl and colleagues implemented a system design in matlab program to meet the energy requirement of a house in the Gebze region only by using wind energy without using another energy source[13].

Levent Bilir and Nurdan Yıldırım Özcan worked to determine the annual production of wind turbines in İzmir region[14].

Fatih Yiğit and Ahmet Kabul investigated the economic analysis of meeting the electrical requirements of a house with wind energy in İsparta[15].

II. ENERGY DEMANDS AND TURBINE SELECTION

The mean energy of a house in Tokat province center was calculated (Figure1). The average energy requirement of a house ranges from 6 kWh to 7 kWh per day.

<table>
<thead>
<tr>
<th>Device</th>
<th>Average Power (watt)</th>
<th>Daily Working Time</th>
<th>Number</th>
<th>Energy Consumption (watt)</th>
<th>Weekly (watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerator</td>
<td>4800</td>
<td>6</td>
<td>1</td>
<td>4800</td>
<td>33600</td>
</tr>
<tr>
<td>Lighting</td>
<td>20</td>
<td>5</td>
<td>6</td>
<td>600</td>
<td>4200</td>
</tr>
<tr>
<td>Tv-Radio etc.</td>
<td>130</td>
<td>5</td>
<td>-</td>
<td>720</td>
<td>5250</td>
</tr>
<tr>
<td>Iron</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>200</td>
<td>2000</td>
</tr>
<tr>
<td>Washing Machine</td>
<td>1100</td>
<td>1.5</td>
<td>1</td>
<td>1650</td>
<td>16500</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>1100</td>
<td>1.5</td>
<td>1</td>
<td>1650</td>
<td>16500</td>
</tr>
<tr>
<td>Computer</td>
<td>100</td>
<td>6</td>
<td>1</td>
<td>600</td>
<td>4200</td>
</tr>
<tr>
<td>Other Devices</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>600</td>
<td>4200</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59450</td>
</tr>
</tbody>
</table>

Fig. 1. The weekly energy used in homes
When these requirements are taken into consideration, the system will be switched on during periods when the energy is disconnected in the systems connected to the network, and at the other times, it will be transferred to the main line. These systems will contribute to the country's production as well as the amount of energy that will be reflected to the invoice, which means to get uninterrupted and free energy (Figure 2).

Fig. 2. Network-connected system

For turbine selection to take place, the average wind speed of the zone must first be known. According to Tokat province wind speed data taken from provincial directorate of meteorology in 2010 - 2011, the wind speed was calculated as 6.5 m/s in province center. The average wind speed varies from 7 m/s to 8 m/s. The mean velocity of the zone to be installed is 7 m/s (Figure 3).

Fig. 3. Tokat region wind speed distribution[16]

When the turbine with the necessary calculated rotor sweep area 24,61m2, the rotor diameter 5,6m, the air density 1225 kg/m3, the average efficiency is 59%, the wind power generation at 7m/s wind speed is 3050W and the annual production is 26718 kW, It can be met.

When the average cost of the system is calculated

- Turbine (5 KW): $ 8000 to $ 10000
- Direct (12m): $ 750 to $ 1000
- Inverter + Protection Box: $ 2000 to $ 3000
- Counter (Duplex) + Board: $ 500 to $ 750
- Other Expenses (Cable, Connection Equipments, Site Concrete, etc.): $ 800 to $ 1000
- The total cost ranges from $ 12,000 to $ 15,750.Direk (12m) : 750$ ile 1000$

III. CONCLUSION

In this study, it is aimed to supply the energy demand of a house located in the Tokat region with the wind turbine connected to the network. The average installation costs of the selected turbine were also found. It is hoped that the establishment of a house in the Tokat region will shed light on the future of the planned wind turbine system. As a result the energy requirement of a household with an average daily energy requirement of 6 kW to 7 kW in the city center with an average output power of 5kW with three blades, a blade diameter of 5.6m, a pole length of 12m, a production start speed of 3 m/s turbine design has been realized. In addition, it has been determined that the cost of the system to be installed in Tokat province varies between 45.000TL and 55.000TL on average depending on the type of material to be used.

REFERENCES

[10] NURBAY N., ÇİNAR A., “Types of Wind Turbines and Their Comparison With Each Other”, Kocaeli University Department of Mechanical Education.
AUTHOR’S PROFILES

First A. Author
V. Karaca was born in Tokat, Turkey, in 1988. In 2010 he graduated in electronic and computer education from Suleyman Demirel University Technical Education Faculty, Isparta Turkey. He completed master's degree in Gaziosmanpaşa University mechatronics engineering department in 2016. He is currently an Lecturer Turhal Vocational High School in Gaziosmanpaşa University. His research interests include visual programming, programmable controllers, artificial intelligence, renewable energy, data mining, photovoltaic systems.

Second A. Author
H. ÇOBAN was born in Gölbaşı on June 10, 1970. He graduated from electrical and electronics engineering at Firat University in 1991. Since 1995 He has been working as a lecturer at Gaziosmanpaşa University Turhal Vocational High School. He works on renewable energy, digital design circuits and systems.

Third A. Author
S. Önal was born in Ankara on November 2, 1975. I graduated from erciyes university in 1999. He completed my master's degree in physics department in Gaziosmanpaşa University in 2007. Since 2001, He has been working as a lecturer at Gaziosmanpaşa University Turhal Higher Vocational High School. He works in renewable energy, artificial intelligence.

Fourth A. Author
T. Altunok was born in Tokat, Turkey, in 1989. In 2013 he graduated from Cumhuriyet University Faculty of Engineering Mechanical Engineering Department, Sivas Turkey. He is still studying master's degree in Gaziosmanpaşa University Mechatronics Engineering Department. He is currently an Lecturer Turhal Vocational High School in Gaziosmanpaşa University. His research interests, renewable energy, mechatronics, hydraulic pneumatic systems.