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Abstract — With the availability of Big Data in 

manufacturing, historical data to initially characterize a 

process is available in abundance. In fact, evaluating and 

selecting the best-fitted data set replaces data availability as 

major concern for setting up a short run SPC. We argue that 

due to the constant rise in computing power, it might not 

always be necessary to decide on one specific data set for a 

priori process characterization and modelling, but instead do 

most of the evaluation a posteriori. Thus, we introduce a new 

method to combine expert knowledge and Bayesian statistics 

for short run SPC in data-rich manufacturing environments. 

After a discussion on the methodology, its applicability and 

convergence, its application to turbine blade manufacturing is 

presented. 
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Fig. 1. The three major steps for Statistical Process 

Control SPC 

 

I. INTRODUCTION 
 

Statistical Process Control (SPC) was developed by 

Walter Shewhart in the 1930s and has since become one of 

the most important and commonly used tools in quality 

management. Applications vary widely and can be found 

from manufacturing [1] to service [2] or even food 

production [3]. Small batches and lot sizes depict one of the 

boundaries for SPC as there is only little data which can be 

used to gain statistical insights into the process. Due to an 

increasing digitalization and datafication in manufacturing, 

big data approaches can help to overcome this information 

gap [4]. Still, when too many data sets are available or 

might even support contradictory hypothesis, a way to 

distinguish the most useful data set needs to be identified. 

This contribution thus introduces a new methodology to 

evaluate differing data sets and process models for SPC for 

small batch a posteriori using a Bayesian approach. 

II. STATISTICAL PROCESS CONTROL 
 

Statistical Process Control has been described widely in 

the scientific literature. Thus, only a very brief introduction 

will be given here to familiarize the reader with the 

necessary background on which the following 

argumentation is based. For a detailed introduction to SPC, 

please refer to e.g. [5,6] or [7] and [8]. 

The main goal of SPC is to find special causes disturbing 

the normal process behavior and resulting in non-

conforming parts. Typically, three major steps can be 

distinguished for the application of SPC, as depicted in 

figure 1: 

1) First of all, data of the process needs to be acquired and 

transformed into a process model specifying how the 

process looks like under statistical control. This is 

typically done using distribution functions (e.g. 

standard normal, F-, or Chi-squared distribution) or 

just by using standard parameters such as process mean 

and standard deviation to describe the normal process 

location and the process variation.  

2) Based on these findings, the process is characterized 

with respect to its capability, expected failure rate, 

failure costs etc. A control chart is set up using control 

limits and additional out-of-control indications like 

runs or trends to detect special causes like shifts in the 

process location or variance. 

3) The process is monitored with respect to these control 

limits and to these control criteria. 

Depending on the cited source, a typical lot size for step 

(1) is 50 to 200 measurements. With growing lot size, the 

uncertainty in the estimation of the process parameters e.g. 

the mean and standard deviation decreases. When only 

small sample sizes are available, e. g. in small batch or short 

run production or in destructive testing, the number of 

available information is not enough to derive a good-

enough process model as described in step (1). Therefor, if 

it is not possible to determine for certain if a process is 

under statistical control and behaves normally, it cannot be 

defined and recognized when special causes affect the 

process. Numerous different approaches have been 

introduced to overcome this problem, which will be 

discussed in the following chapter. 

 

III. LITERATURE REVIEW 
 

Three main different approaches to apply SPC for short 

run production have been identified in the literature review, 

each again with several differing concretizations – The 

Increase of the sample size using data from similar 

processes, the integration of uncertainty in the control 
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procedure and the narrowing of the control focus on 

remarkable deviations. Each will be presented briefly in this 

chapter. 

As pointed out, the number of available data sets for short 

run production is too small. On the other hand, comparable 

processes will have been carried out e.g. on the same 

machine or by the same technology. Thus, one solution is 

to focus on the process and not the product and to combine 

data sets from comparable processes as already stated in [7]. 

Basically two different approaches can be distinguished 

here – the deterministic and the statistic way of selecting 

data. Several authors presented deterministic approaches as 

how to select data based on expert knowledge and 

classification of processes in order to define “similarity” of 

processes. E.g., [9] used the Opitz-scheme to build 

subgroups of data. A similar example can be found in [10]. 

Instead of relying on deterministic classification, data sets 

can also be selected using statistical methods like cluster 

analysis, ANOVA or based on their statistic characteristics, 

e.g. their standard deviation or the average run length, as 

demonstrated by [11], [12] or [13]. 

a) Integration of Uncertainty into the Process 

Control 
One of the first authors to focus on the problem of short 

run SPC was Hillier, who suggested to accept uncertainty 

caused by very small data sets in the beginning of the 

control process by allowing for much wider control limits. 

In the course of the process, more data points are generated 

und thus the control limits tightened [14] and [15]. A similar 

approach has been presented by [16] with a case study for 

nuclear weapons. An analysis of the risk involved with this 

uncertainty can be found in [17] or [18]. 

b) Focus on Noticeable Deviations 
Instead of initially building a process model, a simplified 

process control could also focus on outstanding deviations 

between two process steps. E.g. if the deviation between 

process data point five and six has been three times as high 

as the average deviation from product one to five, a problem 

in the process could be the root cause. [19] was the first to 

introduce this kind of approach, using self-defined Q-values 

(see also [20]). Comparable approaches such as EMWA – 

exponentially weighted moving average – have since been 

introduced by [21], [22] and [23], with a good overall 

overview provided by [24]. [25] used an Artificial Neural 

Network for this kind of deviation detection, [26] combined 

the mean and variance into one value introducing a new 

method called ABS Sequential Probability Ratio Test 

(SPRT). 

It should be pointed out that approaches focusing on 

noticeable deviations (group “c”) do not provide a sufficient 

process model needed to e.g. estimate a process capability 

or detect patterns such as shift in mean and others. Thus, 

this class of approaches helps only to indicate faults in 

processes that lead e.g. to a shut down. Group b) provides a 

full SPC, but only with high uncertainties that make a 

control strategy in the first instances (e.g. product number 

four or five) almost impossible. In contrast to that, group a) 

provides a full process model already at hand from the first 

product onwards. On the other hand, the reliability of the 

control and failure detection highly depends on the quality 

of the data used to initially characterize the process and 

design the process model and therefore on the quality of the 

grouping procedures. Nevertheless, more and more data 

becomes available today due to a new trend in 

manufacturing: big data.  

In Germany, approximately 98% of all manufacturing 

companies are using digital systems e.g. for Enterprise 

Resource Planning (ERP). About 80% of these systems are 

used in the area of manufacturing, recording data on 

processes, quality and many more. As pointed out in a study 

by McKinsey [4], approximately two per cent of all data 

worldwide are created in the area of manufacturing. Thus, 

the basis for process model development for small series 

production is growing rapidly due to better data availability 

and exchange. Numerous authors already pointed out the 

extraordinary value of data for manufacturing in the near 

future, as can be found in [27], [28] or [29]. 

On the other hand, big data is characterized by the so-

called 5 Vs: volume, variety, velocity, veracity and value 

[30]. In the case of mining big data sources for SPC in short 

run production, veracity depicts a severe thread to the 

model development: What needs to be done if data from 

source A indicates a different process model (e.g. with 

respect to mean and capability) than data from source B? 

 

IV. BAYESIAN STATISTICS FOR  

SHORT - RUN SPC 
 

In the following sub-chapter, we would thus like to 

introduce a Bayesian approach to overcome conflicting data 

for short run SPC. After a brief introduction to the basics of 

Bayesian statistics and its differences to classical 

approaches, the current problems in model selection for 

short-run SPC in a big data environment are presented. In a 

last step, an approach to overcome these will be introduced. 

( ) ( | )
( | )

( )

P A P B A
P A B

P B
    (1) 

A. Introduction to Bayesian Statistics 
Classical statistical approaches create assumptions based 

on all available data a priori to a certain event. Knowledge 

is gathered up front and transferred into a model of the 

investigated process, e.g. using a standard distribution 

function. In the subsequent steps, new data points are 

interpreted according to this a priori model. 

In opposition to that, the cleric Thomas Bayes developed 

a different approach to estimate likelihoods in his 1763 “An 

Essay towards solving a Problem in the Doctrine of 

Chances”: Based on some (probably imperfect) prior 

knowledge, an a priori likelihood is estimated. Afterwards, 

taking in new observations, this distribution or likelihood 

estimation is refined with every piece of information (new 

observations) that becomes available in the course of an 

experiment. Thus, the a posteriori likelihood of observation 

B under the assumption of hypothesis A is calculated using 

the it’s a priori estimation P(A), the likelihood of B if A is 

correct P(B|A) and the sum of all probabilities of the 

observation of B P(B) (see formula 1). 

Bayes used this approach to iteratively calculate the 

likelihood of the landing of a ball on a billiard table starting 
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with a 50-50 estimation, refining this mode with every new 

throw. Few years later, Laplace developed a similar method 

without knowing Bayes while working his way through the 

French birth registers. Today, the approach is used in a wide 

array of applications from google’s phrase completion to 

search algorithms and game theory [31]. In the following 

chapter, we would like to introduce a method of using 

Bayesian statistics for model selection for production 

control in big data environments. 

B. Problem Description 
For short-run SPC, the usage of trial runs to gain enough 

insights on a process to state control limits and capabilities 

(step 1 and 2) is not feasible due to too little overall 

measurements. Hence, historical data is used very often to 

gain an a priori process model (compare (a) in the state of 

the literature). As described, the availability of historical 

data to derive a process control strategy depicts only a 

minor problem in todays’ manufacturing environment. 

Instead, a multitude of data points could be used to 

characterize a process.]

 

 
Fig. 1.  Proposed methodology. 

 

As seen in the literature review, experts are very often 

consulted to decide which data sources and groups to 

include into the characterization of a process. Based on 

technical similarity, machine characteristics, tools in use, 

materials and many more, this data selection can already be 

achieved today. Especially for Computer Aided Quality 

Management Systems, such a pre-selection of historical 

data points is common practice [32]. 

Still, when gathering historical data sets from which to 

derive a process model for a short-run SPC, conflicting 

predictions towards the process capability, mean variation 

etc., might arise. More often than not, several different data 

sets could be used to characterize a process, but are not 

compatible from an expert point of view. Typically, two 

solutions come to mind: 

1) Focus on one group a data that seams most plausible or 

2) Merge data from different runs and groups. 

While (1) inherits the danger of leaving out important 

data due to an overconfident expert, (2) typically widens the 

expected mean variation and in the worst case lease to 

comparing pears to apples. Instead, we propose a different 

approach, depicted in the next sub-chapter. 

C. Methodology 
Instead of either merging a larger sub-set of probably 

comparable data sets or choosing one plausible group, we 

propose the procedure introduced in figure 2: Based on a 

wide range of historical data, all plausible sub-groups 

should be considered for the short-run SPC, but kept in their 

own sub-groups. Afterwards, the comparability / similarity 

of these subgroups to the process in question should be 

estimated using expert knowledge. As depicted in [9], this 

can e.g. be based on the Opitz-scheme as well as technical 

characteristics such as machines, tools, machine parameters 

etc. 

Applying this “expert filter” will lead to a smaller sub-

group of data sets, each reflecting a different process model 

with respect to e.g. mean value and variation. All of these 

different models should subsequently be used for the 

control of the process. The initial technical similarity from 

the expert evaluation should be used to calculate the a priori 

likelihood of the particular model. These reflect the initial 

probability that the particular model is the correct one to 

describe the behavior of the process currently under 

surveillance. 

Regrading the calculations, it is assumed that we wish to 

select the model with the highest probability out of a class 

of models 𝑀𝑗  (𝑗 = 1, … , 𝑁), which are expressed as 

probability density functions or probability mass functions 

(pdf, pmf) 𝑓𝑗(𝑥). The pdf or pmfs are estimated from the 

data-sets of existing “similar” processes. On the other hand 

an experts judgement 𝑈 on the probability of each model is 

given, which is expressed as a prior probability 𝑃(𝑀𝑗|𝑈). 

Note that the prior probabilities have to be normalized, 

satisfying the condition  
 

∑ 𝑃(𝑀𝑗|𝑈) 𝑝(𝐷|𝑀𝑗 , 𝑈)𝑁
𝑗=1 = 1. 

 

If we now observe data 𝐷 from the new production 

process, Bayes’ theorem can be used to obtain the 

probability of the model conditional to the observed data 

and the experts judgement 𝑃(𝑀𝑗|𝐷, 𝑈) as described by 

Beck and Yuen [36]: 
 

𝑃(𝑀𝑗|𝐷, 𝑈) =
𝑃(𝑀𝑗|𝑈) 𝑝(𝐷|𝑀𝑗 , 𝑈)

∑ 𝑃(𝑀𝑗|𝑈) 𝑝(𝐷|𝑀𝑗 , 𝑈)𝑁
𝑗=1

  𝑗 = 1, 2, … , 𝑁     (2) 

 

where the factor 𝑝(𝐷|𝑀𝑗, 𝑈) is the evidence or likelihood 

of the model 𝑀𝑗 given the data 𝐷. Note that likelihood is 

independent of 𝑈 [34] and therefore 𝑝(𝐷|𝑀𝑗 , 𝑈) reduces to 
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𝑝(𝐷|𝑀𝑗). If 𝐷 consists only of one observation 𝑥𝑖, then 

𝑝(𝐷|𝑀𝑗) = 𝑓𝑗(𝑥𝑖).  

This means the a posteriori probability 𝑃(𝑀𝑗|𝐷, 𝑈) of a 

particular model 𝑀𝑗 for being the correct one to predict the 

behavior of the process under the new surveillance is now 

known. Note that, if one wishes to select the model with the 

highest probability only the term 𝑃(𝑀𝑗|𝑈) 𝑝(𝐷|𝑀𝑗 , 𝑈) is 

relevant. The procedure can be iterated for every new 

observation 𝐷𝑖 = 𝑥𝑖  by setting 𝑃𝑖(𝑀𝑗|𝑈) = 𝑃𝑖(𝑀𝑗|𝐷𝑖 , 𝑈), 

resulting in: 

 

𝑃𝑖+1(𝑀𝑗|𝐷𝑖+1, 𝑈) =
𝑃𝑖(𝑀𝑗|𝑈) 𝑝(𝐷𝑖+1|𝑀𝑗 , 𝑈)

∑ 𝑃𝑖(𝑀𝑗|𝑈) 𝑝(𝐷𝑖+1|𝑀𝑗 , 𝑈)𝑁
𝑗=1

      (3) 

  

The convergence of the posterior depends on the model 

assumptions and the distribution of the data. Under regular 

conditions, the different probabilities of the particular 

models for matching the observed behavior should merge 

towards favoring one particular model according to the 

Bernstein-von Mises theorem. For a detailed discussion of 

the conditions and assumptions for convergence, see [35] or 

[36]. 

 

V. VALIDATION EXAMPLE 
 

The machining of blades for stationary gas turbines is a 

typical example for short-run SPCs: A standard set of 

blades consists of 30 to 50 units. Due to low overall 

production volume and high variety in size and 

performance, the same machines are utilized for a large 

variety of parts, which in turn are only produced once every 

few weeks or even months. Especially for low-running gas 

turbine designs, blades might only be machined once in 

every few weeks. Thus, classical SPC has not been applied 

yet, but some kind of process control would benefit the 

overall process reliability and stability: As one single blade 

can cost more than 10.000 €, losing parts due to a process 

out of tolerance is not acceptable. 

For certain types of probably similar blade types, the 

manufacturing values for the characteristic of the so-called 

“assembly platform” have been obtained. For the critical 

characteristic “interlocking foot length” of one certain blade 

size and type with a design value of 6.77 mm and a rather 

narrow tolerance width, the comparability of four other 

product data sets have been discussed with milling process 

experts. Based on the factors »location and manufacturing 

system«, »process«, »machine type«, »blade material«, 

»tool«, »design value of the characteristic«, »tolerances«, 

»cutting speed / chipping volume« as well as »clamping«, 

an initial comparability was determined, based on 

interviews and discussions with these experts. The relative 

comparability of data sets to the one that should be 

explained ranged from 50% to 89% (see figure 3), the fourth 

data set was excluded due to lower expected explanation 

power. 

Fig. 3. The three exemplary process models based on the 

expert selection. 

 

Each data set was transferred into a process model, using 

the assumption of normal distributions. Based on these 

discussions, three data sets (comparability ranging from 

55% to 89%) were chosen to be used as possible process 

models. In a first step, these have been normalized, leading 

to the a priori probabilities 𝑃0(𝑀𝑗|𝑈) in table 1. Afterwards, 

the measurement values of the machining of the 

interlocking foot length have been obtained and used to 

calculate the posterior probabilities of the three process 

models. 

 

Table 1. A posteriori likelihood of the three models for the 

first three observations. 

model/ 

data set 

𝑀𝑗 
𝑃0(𝑀𝑗|𝑈) 

Measurement values / observations 𝑥𝑖 

Number 𝑖 1 2 3 

Real value (mm) 6,767 6,758 6,765 

1 26,3 % 

𝑃𝑖(𝑀𝑗|𝐷𝑖 , 𝑈) 

10,9% 1,65 % 0,3 % 

2 31,6 % 4,1 % 0,8 % 0,06 % 

3 42,1 % 85 % 97,5 % 99,6 % 

 

As can be seen, the Bayesian evaluation of the a priori 

models with respect to the observed values from the process 

quickly converged towards one distinctive model: Already 

after three real measurement values, it became clear that 

model 3 showed the highest explanation power towards this 

new – unknown – process and should thus be used for initial 

estimation of the process control chart. Twenty 

measurement values were used in total, but did not change 

anything with respect to model probability. 

After 20 observations from the real process, a normal 

distribution from these data points had been deducted, 

showing a very high overall overlap with the values from 

model 3. Had it been used to deduct a control chart, no 

failure criterion would have been met in the course of the 

observations, which again matches the results from the 

measurements: All 20 blades have been produced in the 

tolerance range. Based on feedback from process experts, it 

can be deducted that this Bayesian criterion to evaluate the 

a posteriori likelihood of a certain process modell after few 

observations would have helped them to set up a control 

chart earlier and with more certainty than it is done today. 
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VI. DISCUSSION 
 

Some restrictions and remarks need to be made on the 

usage of Bayes in this domain:  

1) The a posteriori probabilities will converge towards the 

best fitting model or data set out of the whole. This also 

applies for data completely out of range. Even if none 

of the models really fits, the closest one will have the 

highest a posteriori probability. This means that a 

correct initial model selection is crucial. 

2) The a priori and a posteriori probabilities will always 

sum up to 100 % and thus provide only a relative 

distinction between the data sets or process models. 

3) The convergence of the a posteriori probabilities has 

been observed to be slow for two models with a high 

overlap and statistical similarity (e.g. almost identical 

mean and standard deviation). 
 

VII. CONCLUSION 
 

Using the Bayesian approach for model evaluation can be 

a helpful tool to decide upon a certain data set for statistical 

process control in short run production. Its applicability has 

been discussed in theory as well as shown with the 

validation case of turbine blade manufacturing. This means 

that even though Bayesian statistics can be a helpful tool to 

quickly identify the best-fitted data set for the initial 

estimation of a control chart in sort run SPC, the 

involvement of technical experts is crucial – in the initial 

data selection as well as in the interpretation of the 

intermediate results. 
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