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Abstract – This paper proposes a modified probabilistic procedure for deriving an ultimate strength and strain design 

model for a speed reducer. Reliability-Based Design Optimization (RBDO) techniques have been used. A prominent 

decoupled method for RBDO is presented in this paper. To test the proposed method, a mathematical RBDO 

formulation of a speed reduced was studied and solved. Considering the complex nature of the problem, some 

constraints were simplified. Two popular solution methods known as Sequential Quadratic Programming (SQP) and 

Interior Point (IP) were implemented and compared against each other to check for consistency and competitive 

advantages. This study can be further extended to other steel structures that require robustness in their design 

parameters to ensure safety and reliability. 
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I. INTRODUCTION 

Structures in areas of high seismic risk may be susceptible to severe damage in a large earthquake. Older 

structures designed to meet the code criteria of the time of their construction may be at even greater risk. In many 

cases, these structures have deficiencies in lateral strength and/ or ductility when evaluated with respect to current 

code criteria. Life safety and financial considerations make many of these structures viable candidates for retrofit 

seismic strengthening. The buildings often had perimeter frames to resist lateral forces and a light interior slab 

system to carry gravity forces. The perimeter frames often had deep, stiff spandrel beams and short, flexible 

columns with relatively small cross sections. Such a system was popular because the deep spandrels became the 

exterior walls and directly formed the window openings. Due to the relative capacities of the spandrel beams and 

short columns, the governing failure mode under lateral load is likely to be shear failure of the columns. This 

failure mode is accompanied by little warning and endangers the gravity-load-carrying system. Compounding the 

problem, the lateral forces for which older structures are designed may be as little as half those calculated using 

current seismic codes. A number of researchers have investigated various techniques such as infilling walls, 

adding walls to existing columns, encasing columns, and adding steel bracing to improve the strength and/or 

ductility of existing buildings (See [1] - [3]). In the present paper, results of tests of a two-thirds-scale frame 

strengthened by adding an exterior structural steel bracing system are presented. The bracing system was designed 

to improve the seismic performance of the frame by increasing its lateral stiffness and capacity. Through addition 

of the bracing system, load could be transferred out of the frame and into the braces, bypassing the weak columns 

while increasing strength. 

It was desirable to construct and test a large-scale model to evaluate connection behavior and practical aspects 

of construction. Connections of strengthening elements to the existing structure have an important influence on 

the behavior of the strengthened system (See [1]). Many seismic strengthening tests have been performed on small 

scale models; however, concerns exist over whether connection behavior is adequately modeled at small scales. 
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II. LITERATURE REVIEW 

Reliability analysis methods can be divided into simulation methods and analytical methods. Simulation 

methods, such as Monte Carlo Simulation (MCS), are achieved through realizing random variables and 

determining whether a particular event occurs for the simulation instance (See [4]). The ratio of the number of 

failures to the total number of samples is regarded as the probability of failure. MCS is computationally expensive, 

especially when the probability of failure is low. Analytical methods are commonly used due to their efficiency 

compared to simulation methods. Analytical methods are generally gradient-based, including the ‘worse case’ 

analysis method, the moment matching method (See [5]) and the most probable point (MPP) based method (See 

[7]). The ‘worse case’ analysis method and the moment matching method are earlier reliability analysis methods, 

which are inaccurate when the random variables have large variations. The strategy of searching MPP is more 

efficient. Reliability index approach (RIA) (see [7] - [11]) and performance measure approach (PMA). 

According to the integration strategies of reliability analysis and optimization, RBDO methods can be divided 

into three categories: double loop methods, single loop methods and decoupled methods (See [12] - [13]).  Double-

loop methods have two nested loops: the design optimization loop and reliability analysis loop. In each iteration, 

the design optimization loop repeatedly calls the reliability analysis loop to get the reliability information. The 

computational cost of double-loop method is prohibitive, especially when the performance functions are highly 

nonlinear. 

Single-loop method (See [14] - [19]) adopts the Karush–Kuhn–Tucker (KKT) conditions to substitute the 

reliability analysis loop. It is very efficient for RBDO problems with linear and moderate nonlinear performance 

functions. Decoupled method (see [5], [20] - [24]) conducts design optimization and reliability analysis 

sequentially. When a new design point is obtained from deterministic optimization, reliability analysis will be 

performed to assess the reliability of the design and find the MPPs and shifting vectors, then limit state constraints 

will be moved according to these shifting vectors to convert the RBDO problem into a deterministic optimization 

problem. The key of the decoupled method is the shifting vector as it directly affects the efficiency and accuracy 

of RBDO results. Metamodels are also applied in RBDO to substitute the original performance functions. A 

response surface method (RSM) for RBDO was used in the literature (See [25]). An adaption of symmetric optimal 

Latin hypercube sampling and kriging model for design optimization under uncertainty was also discussed (See 

[26]). An RBDO method using the moment method and kriging model is explored (See [27]). The authors applied 

a constraint boundary sampling method and kriging model for RBDO. A more recent approach with a new 

sequential sampling method for design under uncertainty was proposed (See [28]).  

The most promising structure for RBDO is the decoupled method, such as the sequential optimization and 

reliability analysis method (See [5]) that is also known as SORA. In SORA, limit state constraints gi(X) = 0; i = 

1, · · ·, N are moved to the feasible region according to the shifting vectors. PMA (also called the inverse reliability 

analysis method) is usually applied to retrieve these shifting vectors in the original SORA method (See [5] and 

[20]). However, the shifting vector obtained from PMA is based on the specific performance function gi(X) = gik, 

instead of the limit state constraint gi(X) = 0. If the performance function gi(X) is highly nonlinear, the shapes of 

the functions gi(X) = gik and gi(X) = 0 may vary widely; then the shifting vector obtained from PMA will not be 

accurate to give the optimal moving direction for the probabilistic constraint. 
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Accuracy of the shifting vector in decoupled method is critical; a large error in the shifting vector may lead to 

more optimization iterations. In this paper, the optimal shifting vector (OSV) approach will be proposed. A new 

reliability analysis model will be built, in which the shifting vectors are searched utilizing the limit state functions 

gi(X) = 0; i = 1, …., N, rather than the specific performance functions gi(X) = gi; ki = 1, …, N. Hence the accuracy 

of the shifting vectors obtained from the OSV model will not be affected by the nonlinearity of the performance 

functions. 

The new reliability analysis model is conducted in the super sphere design space to reduce its number of 

constraints and design variables, and it can yield the optimal shifting vectors even for highly nonlinear constraints. 

These optimal shifting vectors will reduce the number of optimization iterations and constraint function calls, thus 

enhancing the efficiency of the proposed OSV method. 

III. METHODOLOGY 

There are several theory and concepts that have been used to Reliability Based Design Optimization (RBDO) 

problem and its solutions. The following terms and illustrations are necessary to completely understand the 

procedures and methods followed in this paper. 

A typical RBDO problem is formulated as follows: 

find: d, μ
x
 

min f(d, μ
x
, μ

p
) 

s.t. Prob(g
i
(d, X, P) ≥ 0) ≥ Ri, i = 1, 2, 3,…,N 

d
lower ≤ d ≤ dupper

, μ
x
lower ≤ μ

x
 ≤ μ

x
upper  

Where f(d, μx, μp) is the objective function, Prob (gi (d, X, P) ≥ 0) is the probability function which denotes the 

probability of satisfying the ith performance function gi (d, X, P); N is the number of probabilistic constraints, d is 

the vector of deterministic design variables; X and P are the vectors of  random design variables and random 

parameters; μx and μp denote the mean vectors of X and P; Ri denotes the denotes the desired design probability 

of satisfying the ith probabilistic constraint. 

Two optimization techniques will be used in this paper to solve and compare the solutions which were tested 

and validated by Rabiei Hosseinabad and Ahmadian in 2014 (See [6]). Those are sequential quadratic 

programming (SQP) and Interior point (IP) method. A brief discussion on these methods is presented in the 

following paragraphs. 

The Sequential quadratic programming (SQP) is an iterative method for nonlinear optimization. SQP methods 

are used on mathematical problems for which the objective function and the constraints are twice continuously 

differentiable. 

SQP methods solve a sequence of optimization sub-problems, each of which optimizes a quadratic model of 

the objective subject to a linearization of the constraints. If the problem is unconstrained, then the method reduces 

to Newton's method for finding a point where the gradient of the objective vanishes. If the problem has only 

equality constraints, then the method is equivalent to applying Newton's method to the first-order optimality 

conditions, or Karush–Kuhn–Tucker (KKT) conditions, of the problem. SQP methods have been implemented in 
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many packages, including KNITRO, NPSOL, SNOPT, NLPQL, OPSYC, OPTIMA, MATLAB, GNU Octave, 

SQP and SciPy. 

Interior point methods (also referred to as barrier methods) are a certain class of algorithms that solves linear 

and nonlinear convex optimization problems. John von Neumann suggested an interior point method of linear 

programming which was neither a polynomial time method nor an efficient method in practice. In fact, it turned 

out to be slower in practice compared to simplex method which is not a polynomial time method. In 1984, 

Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm which runs in 

probably polynomial time and is also very efficient in practice. It enabled solutions of linear programming 

problems which were beyond the capabilities of the simplex method. Contrary to the simplex method, it reaches 

a best solution by traversing the interior of the feasible region. The method can be generalized to convex 

programming based on a self-concordant barrier function used to encode the convex set. 

Any convex optimization problem can be transformed into minimizing (or maximizing) a linear function over 

a convex set by converting to the epigraph form. The idea of encoding the feasible set using a barrier and designing 

barrier methods was studied by Anthony V. Fiacco, Garth P. McCormick, and others in the early 1960s. These 

ideas were mainly developed for general nonlinear programming, but they were later abandoned due to the 

presence of more competitive methods for this class of problems (e.g. sequential quadratic programming). In a 

recent study conducted by Rabiei Hosseinabad and Moraga in 2017, they have introduced a novel way of showing 

non-linearity in a system using system dynamics approach which opened a new path for future researchers looking 

to investigate on the non-linearity existed within a system caused by variables affecting that system (See [22] & 

[31]). 

The class of primal-dual path-following interior point methods is considered the most successful. Mehrotra's 

predictor-corrector algorithm provides the basis for most implementations of this class of methods. 

IV. NUMERICAL EXAMPLE 

The problem of this paper is mainly concerned with the optimization of the design parameters of a speed reducer 

considering the reliability-based design optimization (RBDO) approach. A speed reducer shown in Fig. 1 is used 

to rotate the engine and propeller with efficient velocity in light plane (See [27]). This problem has seven random 

variables and 11 probabilistic constraints. The objective function is to minimize the weight, and the probabilistic 

constraints are related to physical quantities such as bending stress, contact stress, longitudinal displacement, 

stress of the shaft, and geometry constraints. The random design variables are gear width (X1), gear module (X2), 

the number of pinion teeth (X3), distance between bearings (X4, X5), and diameter of each shaft (X6, X7). 

 

Fig 1. A speed reduced (taken from [27]) 
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V. MATHEMATICAL FORMULATION 

The speed reducer mass minimization problem can be formulated as below: 
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where all the variables are assumed to be non-negative. 

The initial design point may be selected as the result of deterministic optimization. All random variables are 

statistically independent and have normal distributions. The probability values should lie in between 0 to 1 when 

the probability density functions are integrated to find out the value of areas under the normal curve. 

VI. RESULT AND ANALYSIS 

This section will deal with the two solution techniques and their side by side comparison. First the SQP method 

solution output will be analyzed and discussed followed by the interior-point algorithm solution output. The 

comparison table will clarify the idea on which solution methods are better in terms of the number of iterations, 

convergence speed and time required for solutions. 

The output shown by Table 1 is generated by values obtained from MATLAB. 
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Table 1. Optimized values obtained by SQP and IP 

Variable SQP IP 

X1 0.1000 0.1000 

X2 0.6964 0.6964 

X3 0.1000 0.1000 

X4 0.1000 0.1000 

X5 0.1000 0.1000 

X6 0.1000 0.1000 

X6 0.1000 0.1000 

Table 2 shows the comparison between the efficiency of the two methods in terms of some metrics. 

Table 2. Comparison between two methods. 

Method Iterations Time (s) Convergence 

SQP 6 61.29 Slower 

IP 4 46.61 Faster 

The tolerance limit of 10-6 was maintained here as well to preserve consistency and feasibility. The solution 

from both the methods appeared to be same which proves the formulation of the RBDO to be authentic and yields 

a consistent result.  

As we can see from the output, the sequential quadratic programming found a local minimum that satisfied the 

constraints. The optimized design variables are shown here as well. The values are within the specified limits. The 

convergence process took a total of 6 iterations and tends to be a bit slower than the interior point method 

(discussed above). The required time for SQP to complete the process took more than 1 minute. That is due to the 

11 probabilistic constraints included in the formulation of the speed reducer RBDO problem. 

For IP, the convergence process took a total of 4 iterations and tends to be a bit faster than the interior point 

method. The process took less than 50 seconds to complete and seemed very efficient to find out the solution 

swiftly. 

VII. CONCLUSION 

There are several scopes to improve the solution generated by these procedures. This study is basically an effort 

to successfully understand the logic behind these RBDO procedures. The reliability-based designs can be very 

complex and the existing standard algorithms sometimes fail to solve them effectively. So, the search for robust 

techniques has been essential. The author is actively looking forward to continuing this research to formulate and 

solve complex reliability design related problems by modifying algorithms necessary to specific design 

optimization.  
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APPENDIX 

1. MATLAB Fmincon Optimizer 
%.m file for the optimization assignment  

% Initialize function  

   

function [x,fval]= rbdo_speed(~)  

clc;  

%Define options for optimset command (mainly the specific algorithm used)  

options = optimset;  

   

%Choose the SQP algorithm for the problem  

options = optimset(options,'Algorithm', 'SQP');  

%options = optimset(options,'Algorithm', 'Interior-point');  

%Display the number of iterations needed  

options=optimset(options,'Display','iter');  

   

%Evaluate the optimized variables and minimum value using fmincon function  

   

[x,fval]=fmincon(@(x) rbdo_func(x),[.1 .2 .3 .4 .5 .6 .7],[],[],[],[],[0.1...   

    0.1 0.1 0.1 0.1 0.1 0.1],[1 1 1 1 1 1 1],@(x)limit_state(x),options);  

end  

 

2. Objective Function 

function [f]=rbdo_func(x)  

   

%Define the objective function (which is to be minimized) in terms of   

%Random design variables  

f=0.7845*x(1)*x(2)^2*(3.3333*x(3)^2+14.9334*x(3)-43.0934)-1.508*x(1)*(x(6)^2+...  

    x(7)^2)+7.477*(x(6)^3+x(7)^3)+0.7854*(x(4)*x(6)^2+x(5)*x(7)^2);  

%The function consists of 7 random design variables from x(1) to x(7)  

end 

 

3. Constraint Functions 
function [c,ceq]=limit_state(x)  

%Define the value of phi(-beta) for each of the limit state constraints  

b1=0.2;  

b2=0.4;  

b3=0.5;  

b4=0.33;  

b5=0.75;  

b6=0.55;  

b7=0.25;  

b8=0.35;  

b9=0.60;  

b10=0.7;  

b11=0.55;    

%Define symbolics to perform exact integration  

syms x1 x2 x3 x4 x5 x6 x7  

   

%Constraint #1  

p1=int(int(int(27/(x1*x2.^2*x3)-1,x1),x2),x3);  

g1=matlabFunction(p1);  

c1=g1(x(1),x(2),x(3))-b1;  

   

%Constraint #2  

p2=int(int(int(397.5/(x1*x2.^2*x3.^2)-1,x1),x2),x3);  

g2=matlabFunction(p2);  

c2=g2(x(1),x(2),x(3))-b2;  
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%Constraint #3  

p3=int(int(int(int((1.93*x4.^3)/(x1*x2.^2*x6.^4)-1,x1),x2),x6),x4);  

g3=matlabFunction(p3);  

c3=g3(x(4),x(1),x(2),x(6))-b3;  

   

%Constraint #4  

p4=int(int(int(int((1.93*x5.^3)/(x2*x3*x7.^4)-1,x2),x3),x5),x7);  

g4=matlabFunction(p4);  

c4=g4(x(2),x(3),x(5),x(7))-b4;  

   

%Constraint #5  

p5=int(int(int(int(-1100+sqrt((745*x4/x2*x3)^2)/0.1*x6^3))));  

g5=matlabFunction(p5);  

c5=g5(x(2),x(3),x(4),x(6))-b5;  

   

%Constraint #6  

p6=int(int(int(int(-850+sqrt((745*x4/(x2*x3))^2)/(0.1*x7^3)))));  

g6=matlabFunction(p6);  

c6=g6(x(2),x(3),x(4),x(7))-b6;  

   

%Constraint #7  

p7=int(int(x2*x3-40,x2),x3);  

g7=matlabFunction(p7);  

c7=g7(x(2),x(3))-b7;  

   

%Constraint #8  

p8=int(int(5-x1./x2,x1),x2);  

g8=matlabFunction(p8);  

c8=g8(x(1),x(2))-b8;  

 %Constraint #9  

p9=int(int(-12+x1./x2,x1),x2);  

g9=matlabFunction(p9);  

c9=g9(x(1),x(2))-b9;   

%Constraint #10  

p10=int(int(-1+(1.5*x6+1.9)./x4,x6),x4);  

g10=matlabFunction(p10);  

c10=g10(x(4),x(6))-b10;   

%Constraint #11  

p11=int(int(-1+(1.1*x7+1.9)./x5,x7),x5);  

g11=matlabFunction(p11);  

c11=g11(x(5),x(7))-b11;   

%Define inequality constraint   

c=[c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11];  

ceq=[]; 


